← 返回导航

澳大利亚AMC-10年级D

Australian Mathematics Competition - Grade 10 Division D

AUSTRALIAN MATHS TRUST 2019

TIME ALLOWED: 75 minutes

INSTRUCTIONS AND INFORMATION

General

1 Do not open the booklet until told to do so by your teacher.

2 NO calculators, maths stencils, mobile phones or other calculating aids are permitted. Scribbling paper, graph paper, ruler and compasses are permitted, but are not essential.

3 Diagrams are NOT drawn to scale. They are intended only as aids.

4 There are 25 multiple-choice questions, each requiring a single answer, and 5 questions that require a whole number answer between 0 and 999 . The questions generally get harder as you work through the paper. There is no penalty for an incorrect response.

5 This is a competition not a test; do not expect to answer all questions. You are only competing against your own year in your own country/Australian state so different years doing the same paper are not compared.

6 Read the instructions on the answer sheet carefully. Ensure your name, school name and school year are entered. It is your responsibility to correctly code your answer sheet.

7 When your teacher gives the signal, begin working on the problems

The answer sheet

1 Use only lead pencil.

2 Record your answers on the reverse of the answer sheet (not on the question paper) by FULLY colouring the circle matching your answer.

3 Your answer sheet will be scanned. The optical scanner will attempt to read all markings even if they are in the wrong places, so please be careful not to doodle or write anything extra on the answer sheet. If you want to change an answer or remove any marks, use a plastic eraser and be sure to remove all marks and smudges.

Integrity of the competition

The AMT reserves the right to re-examine students before deciding whether to grant official status to their score.

Reminder: You may sit this competition once, in one division only, or risk no score.

1-10 题, 每题 3 分

Questions 1 to10,3marks each

1.
算式 \( {20.19} - {19} \) 之值等于

The value of \( {20.19} - {19} \) is

(A) 39.19 (B) 20.38 (C) 20 (D) 1.19 (E) 1

__________

2.
小姗的钢琴课历时 40 分钟,她在下午 4:10 下课。请问她在什么时刻开始上课?
bo_d3i93os601uc738jdga0_1_1011_677_433_134_0.jpg

(A) 下午 3: 30 (B) 下午 3: 40 (C) 下午 3: 50 (D) 下午 4: 40 (E) 下午 4: 50 Sharyn’s piano lesson was 40 minutes long, and finished at \( 4 : {10}\mathrm{{pm}} \) . When did it start?

(A) \( 3 : {30}\mathrm{{pm}} \) (B) \( 3 : {40}\mathrm{{pm}} \) (C) \( 3 : {50}\mathrm{{pm}} \) (D) \( 4 : {40}\mathrm{{pm}} \) (E) \( 4 : {50}\mathrm{{pm}} \)

__________

3.
请问下列哪一个选项内的数最接近 \( 7 \times {1.8} \) ?

Which of the following is closest to \( 7 \times {1.8} \) ?

(A) 10 (B) 11 (C) 12 (D) 13 (E) 14

__________

4.
请问右图中涂上阴影的三角形之面积为?
bo_d3i93os601uc738jdga0_1_994_1638_401_172_0.jpg

What is the area of the shaded triangle?

(A) \( 8{\mathrm{\;m}}^{2} \) (B) \( {12}{\mathrm{\;m}}^{2} \) (C) \( {14}{\mathrm{\;m}}^{2} \)

(D) \( {20}{\mathrm{\;m}}^{2} \) (E) \( {24}{\mathrm{\;m}}^{2} \)

5.
某个数的八分之五等于 200 , 请问这个数是什么?

Five-eighths of a number is 200 . What is the number?

(A) 120 (B) 320 (C) 275 (D) 75 (E) 280

6.
在这个 \( 3 \times 3 \) 的方格表的每一行每一列都必须包括数 1、2、3 各一个。

1
2\( N \)
\( M \)

请问 \( N + M \) 之值是什么?

Every row and every column of this \( 3 \times 3 \) square must contain each of the numbers 1,2 and 3 .

What is the value of \( N + M \) ?

(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

7.
将一张纸折成三等分, 然后剪出一个半圆并直着剪一角, 如下图所示。
bo_d3i93os601uc738jdga0_2_341_1054_1007_227_0.jpg

当将这张纸展开, 请问它看起来是哪一个选项?

A piece of paper is folded in three, then a semi-circular cut and a straight cut are made, as shown in the diagram.

When the paper is unfolded, what does it look like?

(A)

bo_d3i93os601uc738jdga0_2_347_1517_1101_437_0.jpg
8.
将一个矩形切成两半, 可以得到两个正方形。如果每个正方形的周长为 48 , 请问原来的矩形之周长为何?

When a rectangle is cut in half, two squares are formed. If each square has a perimeter of 48 , what is the perimeter of the original rectangle?

(A) 96 (B) 72 (C) 36 (D) 24 (E) 12

9.
考虑一个震荡数列

\[ 1,4,7,4,1,4,7,4,1,4,\ldots , \]

它每四项循环。最前 3 项的累计总和是 12 ,最前 7 项的累计总和是 28 。

请问下列哪一个选项内的值可能是这个数列的累计总和?

Consider the undulating number sequence

\[ 1,4,7,4,1,4,7,4,1,4,\ldots , \]

which repeats every four terms. The running total of the first 3 terms is 12 . The running total of the first 7 terms is 28 .

Which one of the following is also a running total of this sequence?

(A) 61 (B) 62 (C) 67 (D) 66 (E) 65

10.
小莎有一个四位数的私人认证码, 她的首三位数码依序是 591 。若小莎的私人认证码可被 3 整除, 请问最后一个数码有几种可能?

Sebastien has a Personal Identification Number (PIN) consisting of four digits. The first three digits in order are 591. If Sebastien's PIN is divisible by 3 , then how many possibilities are there for the final digit?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

11-20 题,每题 4 分

Questions 11 to 20, 4 marks each

11.
在四边形 \( {ABCD} \) 中, \( {AD}\parallel {BC}\text{、}{AB} = {BC} \) 且 \( {AC} = {CD} \) 。已知 \( \angle {CDE} = {140}^{ \circ } \) ,如图所示。请问 \( \angle {ABC} \) 为多少度?
bo_d3i93os601uc738jdga0_4_429_420_827_278_0.jpg
A quadrilateral \( {ABCD} \) has \( {AD}\parallel {BC},{AB} = {BC} \) and \( {AC} = {CD} \) . The external \( \angle {CDE} = {140}^{ \circ } \) . What is the value, in degrees, of \( \angle {ABC} \) ?

(A) 90 (B) 100 (C) 110 (D) 120 (E) 130

12.
在我的舞蹈课里,有 14 位学生比小柏高、有 12 位比小艾矮。有四位学生都比小艾矮也都比小柏高。请问我的舞蹈课里共有多少位学生?

In my dance class, 14 students are taller than Bob, and 12 are shorter than Alice. Four students are both shorter than Alice and taller than Bob. How many students are in my dance class?

(A) 22 (B) 24 (C) 26 (D) 28 (E) 30

13.
将三个正三角形拼在一起而构成一个四边形 \( {ABCD} \) , 如图所示。
bo_d3i93os601uc738jdga0_4_1080_1500_324_218_0.jpg

点 \( X \) 是 \( {CD} \) 的中点。

请问涂上阴影部份的面积占四边形 \( {ABCD} \) 面积的几分之几?

Three equilateral triangles are joined to form the quadrilateral \( {ABCD} \) shown.

The point \( X \) is halfway along \( {CD} \) .

What fraction of the area of \( {ABCD} \) is shaded?

(A) \( \frac{1}{2} \) (B) \( \frac{3}{4} \) (C) \( \frac{2}{3} \) (D) \( \frac{5}{6} \) (E) \( \frac{3}{5} \)

14.
在一个 10 年级的数学课中, 有 30 位学生。每位学生都是 15 岁或 16 岁,且都是左撇子或右撇子。

右撇子与左撇子学生人数之比为 4:1 , 而 15 岁学生人数与 16 岁学生人数之比为 1: 2, 且 15 岁左撇子人数与 16 岁左撇子人数之比为 1: 5。

将这一班所有学生的名牌放进一顶帽子内, 从中随机抽出一个, 请问抽出的学生是 15 岁且是右撇子的机率是什么?

In a year 10 Maths class, there are 30 students. Each student is either 15 or 16 years old, and either left- or right-handed.

The ratio of right-handed students to left-handed students is \( 4 : 1 \) , the ratio of 15 year olds to 16 year olds is \( 1 : 2 \) and the ratio of left-handed 15 year olds to left-handed 16 year olds is 1 : 5 .

If the names of the students in this class are placed in a hat and one is selected at random, what is the probability that the student selected is 15 years old and right-handed?

(A) \( \frac{1}{30} \) (B) \( \frac{1}{6} \) (C) \( \frac{3}{10} \) (D) \( \frac{1}{2} \) (E) \( \frac{4}{5} \)

15.
四个有固定轴心的圆形滚轴,并在不脱离位置的情况下,每个滚轴的转动都能带动下一个滚轴转动。它们的直径分别为 \( {21}\mathrm{\;{cm}} \) 、
bo_d3i93os601uc738jdga0_5_895_1172_511_401_0.jpg

\( {32}\mathrm{\;{cm}} \) 、 \( {50}\mathrm{\;{cm}} \) 、 \( {14}\mathrm{\;{cm}} \) 。

当 \( {21}\mathrm{\;{cm}} \) 的这个滚轴转一整圈 \( \left( {360}^{ \circ }\right) \) ,

请问 \( {14}\mathrm{\;{cm}} \) 的这个滚轴转动的角度为多少?

The set of four rollers shown has fixed axles and transfers rotation from each roller to the next without slipping. Their diameters are \( {21}\mathrm{\;{cm}},{32}\mathrm{\;{cm}},{50}\mathrm{\;{cm}} \) and \( {14}\mathrm{\;{cm}} \) respectively.

While the \( {21}\mathrm{\;{cm}} \) roller makes a full rotation \( \left( {360}^{ \circ }\right) \) , through which angle does the \( {14}\mathrm{\;{cm}} \) roller rotate?

(A) 180° (B) \( {310}^{ \circ } \) (C) 360° (D) \( {540}^{ \circ } \) (E) \( {620}^{ \circ } \)

16.
在一箱苹果中,有 \( \frac{3}{7} \) 的苹果是红色的,其它的则是绿色的。若将五颗绿色苹果加入箱子内,则现在绿色的苹果占 \( \frac{5}{8} \) 。

请问现在的箱子中总共有多少颗苹果?

In a box of apples, \( \frac{3}{7} \) of the apples are red and the rest are green. Five more green apples are added to the box. Now \( \frac{5}{8} \) of the apples are green.

How many apples are there now in the box?

(A) 32 (B) 33 (C) 38 (D) 40 (E) 48

17.
小亚从 1 到 5 中选出一个正整数并公开宣布这个数。接着小莉从 1 到 5 中选出一个正整数并公开宣布这个数。最后小亚从 1 到 5 中选出一个正整数并公开宣布这个数。

如果最后这三个被宣布出的数之和是 7 的倍数, 则小亚获胜, 否则小莉获胜。

请问小亚第一次应该选哪一个数才能保证获胜?

Asha chooses a whole number from 1 to 5 and announces it. Then Richy chooses a whole number from 1 to 5 and announces it. Finally, Asha chooses a whole number from 1 to 5 and announces it.

If the sum of the three numbers announced is a multiple of 7 , then Asha wins; otherwise, Richy wins.

What number should Asha choose on her first turn to guarantee that she can win?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

18.
请问在这个矩形内涂上阴影的三角形面积是什么?
bo_d3i93os601uc738jdga0_6_984_1580_451_276_0.jpg

The area of the shaded triangle inside this rectangle is

(A) \( \frac{1}{2}{\left( x + y\right) }^{2} \) (B) \( x\left( {x + y}\right) \) (C) \( y\left( {x + y}\right) \)

(D) \( \frac{1}{2}\left( {{y}^{2} - {x}^{2}}\right) \) (E) \( \frac{1}{2}\left( {{x}^{2} + {y}^{2}}\right) \)

19.
这三个正立方体上的标记都完全相同, 其中 6 个英文字母 A、M、C、D、E、F 恰在它们的 6 个面上。
bo_d3i93os601uc738jdga0_7_614_338_450_161_0.jpg

现在将这些正立方体排成一列, 使得从正前方看过去它们的样子如下:

bo_d3i93os601uc738jdga0_7_698_596_286_103_0.jpg

当我们从这些正立方体的正后方看过去时, 请问我们将看到什么? (A)

bo_d3i93os601uc738jdga0_7_364_794_1071_256_0.jpg

These three cubes are labelled in exactly the same way, with the 6 letters A, M, C, \( \mathrm{D},\mathrm{E} \) and \( \mathrm{F} \) on their 6 faces:

bo_d3i93os601uc738jdga0_7_612_1182_452_166_0.jpg

The cubes are now placed in a row so that the front looks like this:

bo_d3i93os601uc738jdga0_7_694_1441_291_107_0.jpg

When we look at the cubes from the opposite side, we will see

(A)

bo_d3i93os601uc738jdga0_7_362_1645_1075_258_0.jpg
20.
有五个数排成一列, 从第三个数开始, 每个数都等于它前面二个数的平均。已知第一个数是 12、最后一个数是 7 ,请问第三个数是什么?

Five numbers are placed in a row. From the third number on, each number is the average of the previous two numbers. The first number is 12 and the last number is 7 . What is the third number?

(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

21-25 题,每题 5 分 Questions 21 to 25,5 marks each

21.
一座水池可以透过三根水管同时或分开注入水。

如果只使用第一根水管,则费时 21 小时可将水池注满水。如果只使用第二根水管, 则费时 24 小时可将水池注满水。如果三根水管一起使用, 则费时 8 小时可将水池注满水。

如果只使用第三根水管, 请问需费时多久才可以将水池注满?

(A) 12 小时 (B) 14 小时 (C) 27 小时 (D) 28 小时 (E) 30 小时

A pool can be filled through three pipes that can be used together or separately. If only the first pipe is used, the pool is filled in 21 hours. If only the second pipe is used, the pool is filled in 24 hours. If all three pipes are used, the pool is filled in 8 hours.

How long will it take to fill the pool using only the third pipe?

(A) 12 hours (B) 14 hours (C) 27 hours (D) 28 hours (E) 30 hours

22.
在一个 \( 4\mathrm{\;{cm}} \times 4\mathrm{\;{cm}} \) 的平台上放置有一些 \( 1{\mathrm{\;{cm}}}^{3} \) 的正立方体, 如图所示。

现在将这个平台净空, 然后放上若干个正立方体, 它的前视图与右视图如下图所示。

请问在这个平台上最多可以有多少个正立方体?

前侧 FRONT 右侧 RIGHT

A \( 4\mathrm{\;{cm}} \times 4\mathrm{\;{cm}} \) board can have \( 1{\mathrm{\;{cm}}}^{3} \) cubes placed on it as shown.

The board is cleared, then a number of these cubes are placed on the grid. The front and right side views are shown.

What is the maximum number of cubes there could be on the board?

(A) 10 (B) 11 (C) 16 (D) 17 (E) 18

23.
小敏有三种方式从家里到距离 \( 8\mathrm{\;{km}} \) 的工作地点: 如果他驾车上班,则费时 12 分钟;如果他骑自行车上班,费时 24 分钟;如果他步行上班,费时 1 小时 44 分钟。 他想知道当自行车轮胎没有气时,如何以最短的时间抵达工作地点。 他有三种策略:

(i) 如果他靠近他家,则他走路回家,然后改成驾车上班。

(ii) 如果他靠近工作地点,则剩下的路程他改用步行的方式。

(iii) 如果在中点附近,则花费 20 分钟修理自行车的轮胎然后继续骑车上班。

他知道在前往工作地点的途中, 有二个位置必须改变策略。请问这两个位置的距离是什么?

Manny has three ways to travel the 8 kilometres from home to work: driving his car takes 12 minutes, riding his bike takes 24 minutes and walking takes 1 hour and 44 minutes. He wants to know how to get to work as quickly as possible in the event that he is riding his bike and gets a flat tyre.

He has three strategies:

(i) If he is close to home, walk back home and then drive his car.

(ii) If he is close to work, just walk the rest of the way.

(iii) For some intermediate distances, spend 20 minutes fixing the tyre and then continue riding his bike.

He knows there are two locations along the route to work where the strategy should change. How far apart are they?

(A) \( 2\mathrm{\;{km}} \) (B) \( 3\mathrm{\;{km}} \) (C) \( 4\mathrm{\;{km}} \) (D) \( 5\mathrm{\;{km}} \) (E) \( 6\mathrm{\;{km}} \)

24.
在现代音乐理论中,出现了以下的问题。
bo_d3i93os601uc738jdga0_10_1169_1329_280_283_0.jpg

在一个圆周上有十二个等距离的点。连接其中三个点可以构造一个三角形。

如果两个三角形经过旋转, 但不可以翻转, 会完全吻合在一起, 则视这两个三角形为相同的。例如, 右图所示的两个三角形是相同的。

请问总共可以构造出多少个不同的三角形?

Out of modern musical theory comes the following question.

Twelve points are equally spaced around a circle. Three points are to be joined to make a triangle.

We count two triangles as being the same only if they match perfectly after rotating, but not reflecting. For instance, the two triangles shown are the same.

How many different triangles can be made?

(A) 10 (B) 14 (C) 19 (D) 20 (E) 22

25.
一枚半径为 \( 1\mathrm{\;{cm}} \) 的硬币沿着一个正方形的内壁滚动但不可以滑动或空转, 移动时恒与正方形的边相切。
bo_d3i93os601uc738jdga0_11_1146_276_242_246_0.jpg

当这枚硬币回到出发点时,它恰好转一整圈。

请问这正方形的边长为多少 \( \mathrm{{cm}} \) ?

A circular coin of radius \( 1\mathrm{\;{cm}} \) rolls around the inside of a square without slipping, always touching the boundary of the square.

When it returns to where it started, the coin has performed exactly one whole revolution.

In centimetres, what is the side length of the square?

(A) \( \pi \) (B) 3.5 (C) \( 1 + \pi \) (D) 4 (E) \( 2 + \frac{\pi }{2} \)

问题 26-30 的答案为 000-999 之间的整数,

请将答案填在答案卡上对应的位置。

第 26 题占 6 分,第 27 题占 7 分,第 28 题占 8 分, 第 29 题占 9 分,第 30 题占 10 分。

For questions 26 to 30, shade the answer as an integer from 0 to 999

in the space provided on the answer sheet.

Questions 26-30 are worth 6, 7, 8, 9 and 10 marks, respectively.

26.
如果一个正整数至少有一个数码与它在这个数中的位数之值相同, 则称这个数码为好数。例如 78247 是个好数, 因为数码 4 出现在第 4 位。请问在三位数中有多少个好数?
A positive whole number is called stable if at least one of its digits has the same value as its position in the number. For example, 78247 is stable because a 4 appears in the \( {4}^{\text{th }} \) position. How many stable 3-digit numbers are there?
27.
当我们将一个正整数除以 15 , 其余数会是从 0 到 14 中的一个整数。当我们将一个正整数除以 27 , 其余数会是从 0 到 26 中的一个整数。 例如,这个正整数是 100 ,则余数分别是 10 与 19 ,它们不相等。 请问从 1 到 1000 中, 有多少个数除以 15 与除以 27 所得的余数相同?

When I divide an integer by 15 , the remainder is an integer from 0 to 14 . When I divide an integer by 27 , the remainder is an integer from 0 to 26 .

For instance, if the integer is 100 then the remainders are 10 and 19, which are different.

How many integers from 1 to 1000 leave the same remainders after division by 15 and after division by 27?

28.
数 35 有一个性质, 当我们把它的数码全部各加上 2 , 然后相乘, 则可以得到 \( 5 \times 7 = {35} \) ,与原来的数相等。

找出所有二位数中, 当我们把它的数码全部加上 2 , 然后相乘, 最后所得的结果与原数值相同。请问满足上述条件的所有二位数之和是什么?

The number 35 has the property that when its digits are both increased by 2 , and then multiplied, the result is \( 5 \times 7 = {35} \) , equal to the original number.

Find the sum of all two-digit numbers such that when you increase both digits by 2 , and then multiply these numbers, the product is equal to the original number.

29.
有位暴君下令数码 0 不可以用来计算任何数, 因为 0 代表没有任何东西。所以在计数中不允许出现任何数码 0 。

因此在这个国家的初始几个计数数为 1、2、3、4、5、6、7、8、9、11、12、...,其中第十个数是 11。

当您写下初始一千个该国允许的计数数时, 请问最后一个数的末三位数码是什么?

The Leader of Zip decrees that the digit 0 , since it represents nothing, will no longer be used in any counting number. Only counting numbers without 0 digits are allowed. So the counting numbers in Zip begin 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, ..., where the tenth counting number is 11 .

When you write out the first one thousand allowable counting numbers in Zip, what are the last three digits of the final number?

30.
一只蚂蚁在一道砖墙上的左上角, 牠想爬行到右下角。
bo_d3i93os601uc738jdga0_12_782_1107_631_575_0.jpg

由于天气炎热,牠避免爬上深色的砖面只敢在砖块之间与砖墙最上层、最下层较冷的白色水泥中爬行。

这道砖墙排有 18 行砖, 每行有七整块又半块的砖, 它们以交错的形式排列,如图所示。 请问这只蚂蚁要爬行到对角的最快路径总共有多少种不同的方法?

Antony the ant is at the top-left corner of this brick wall and needs to get to the bottom-right corner.

Because it is a hot day, he avoids the dark bricks and only walks on the cooler white mortar between the bricks and at the top and bottom of the wall.

There are 18 rows of bricks, each with 7 whole bricks and one half-brick in an alternating pattern.

How many different ways are there for Antony to walk to the opposite corner as quickly as possible?

草稿纸

Scratch Paper

草稿纸

Scratch Paper