CHINESE VERSION
NAME
TIME ALLOWED: 75 MINUTES
INSTRUCTIONS AND INFORMATION
General
The answer sheet
Integrity of the competition
The AMT reserves the right to re-examine students before deciding whether to grant official status to their score.
Reminder: You may sit this competition once, in one division only, or risk no score.
1-10 题, 每题 3 分
Questions 1 to10,3marks each
\( 2 - \left( {0 - \left( {2 - 0}\right) }\right) = \)
(A) -4 (B) -2 (C) 0 (D) 2 (E) 4
1000% of 2 is equal to
(A) 0.002 (B) 20 (C) 200 (D) 1002 (E) 2000

In the diagram provided, find the sum of \( x \) and \( y \) .
(A) 30 (B) 75 (C) 95
(D) 105 (E) 180
\( \frac{1 + 2 + 3 + 4 + 5}{1 + 2 + 3 + 4} - \frac{1 + 2}{1 + 2 + 3} = \)
(A) 3 (B) \( \frac{5}{6} \) (C) 1 (D) \( \frac{7}{6} \) (E) 2
Sebastien is thinking of two numbers whose sum is 26 and whose difference is 14 . The product of Sebastien's two numbers is
(A) 80 (B) 96 (C) 105 (D) 120 (E) 132 6. 右图中哪些图形的面积相等? (A) 所有图形的面积都相等。 (B) 只有 \( \mathrm{Q} \) 与 \( \mathrm{S} \) 的面积相等。 (C) 只有 \( \mathrm{R} \) 与 \( \mathrm{T} \) 的面积相等。 (D) 只有 \( \mathrm{P} \) 、 \( \mathrm{R} \) 与 \( \mathrm{T} \) 的面积相等。 (E) \( \mathrm{P}\text{、}\mathrm{R} \) 与 \( \mathrm{T} \) 的面积相等且 \( \mathrm{Q} \) 与 \( \mathrm{S} \) 的面积相等。 Which of the shapes in the diagram have equal area? (A) All of the shapes have equal area. (B) Only \( \mathrm{Q} \) and \( \mathrm{S} \) have equal area. (C) Only \( \mathrm{R} \) and \( \mathrm{T} \) have equal area. (D) Only P, R and T have equal area. (E) \( \mathrm{P},\mathrm{R} \) and \( \mathrm{T} \) have equal area, and \( \mathrm{Q} \) and \( \mathrm{S} \) have equal area.




请问最像哪个英文字母?
Once unfolded, which letter does the piece of paper most resemble?
(A) M (B) O (C) \( \mathrm{N} \) (D) B (E) V

请问原来这个大正三角形的周长是多少?
An equilateral triangle is subdivided into a number of smaller equilateral triangles, as shown. The shaded triangle has side length 2 . What is the perimeter of the large triangle?
(A) 24 (B) 27 (C) 30
(D) 33 (E) 36
11-20 题,每题 4 分
Questions 11 to 20, 4 marks each

请问三角形 \( {XYS} \) 的面积为多少 \( {\mathrm{{cm}}}^{2} \) ?
Triangle \( {XYS} \) is enclosed by rectangle \( {PQRS} \) as shown in the diagram.
In square centimetres, what is the area of triangle \( {XYS} \) ?
(A) 82 (B) 88 (C) 94
(D) 112 (E) 130
Let \( X = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} \) and \( Y = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \) . Then \( X - Y \) is equal to
(A) \( \frac{2}{99} \) (B) \( \frac{1}{11} \) (C) \( \frac{1}{10} \) (D) \( \frac{1}{2} \) (E) \( \frac{2}{9} \)
The number 25 can be written as the sum of three different primes less than 20 . For instance, \( {25} = 5 + 7 + {13} \) .
How many multiples of 10 can be written as the sum of three different primes less than 20?
(A) 1 (B) 2 (C) 3 (D) 4 (E) 5


In this circle with centre \( O \) , four triangles are drawn, with angles as shown. What is the value of \( x \) ?
(A) 10 (B) 15 (C) 18
(D) 24 (E) 36
There are 10 children in a classroom. The ratio of boys to girls increases when another girl and another boy enter the room. What is the greatest number of boys that could have been in the room at the beginning?
(A) 1 (B) 4 (C) 5 (D) 6 (E) 9


请问三角形 \( A \) 的周长与三角形 \( B \) 的周长之差为多少?
(A) \( 0\mathrm{\;{cm}} \) (B) 介于 \( 0\mathrm{\;{cm}} \) 与 \( 1\mathrm{\;{cm}} \) 之间 (C) 介于 \( 1\mathrm{\;{cm}} \) 与 \( 2\mathrm{\;{cm}} \) 之间
(D) 介于 \( 2\mathrm{\;{cm}} \) 与 \( 3\mathrm{\;{cm}} \) 之间 (E) 超过 \( 3\mathrm{\;{cm}} \)
Two triangles, \( A \) and \( B \) , have the same area. Triangle \( A \) is isosceles and triangle \( B \) is right-angled.
The difference between the perimeters of triangle \( A \) and triangle \( B \) is
(A) nothing (B) between \( 0\mathrm{\;{cm}} \) and \( 1\mathrm{\;{cm}} \) (C) between \( 1\mathrm{\;{cm}} \) and \( 2\mathrm{\;{cm}} \)
(D) between \( 2\mathrm{\;{cm}} \) and \( 3\mathrm{\;{cm}} \) (E) more than \( 3\mathrm{\;{cm}} \)
\[ 2,5,{10},{50},{500},\ldots \]
请问第八项是多少?
\( 2,5,{10},{50},{500},\ldots \)
The value of the eighth term is
(A) \( {2}^{5} \times {5}^{8} \) (B) \( {2}^{8} \times {5}^{9} \) (C) \( {2}^{8} \times {5}^{13} \) (D) \( {2}^{9} \times {5}^{15} \) (E) \( {2}^{13} \times {5}^{21} \)

Two sides of a regular hexagon are extended to create a small triangle.
Inside this triangle, a smaller regular hexagon is drawn, as shown.
In area, how many times bigger is the larger hexagon than the smaller hexagon?
(A) 4 (B) 6 (C) 8 (D) 9 (E) 12
请问 n 的最小可能值是多少?
The number \( \frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times {10}}{n} \) is a perfect square.
What is the smallest possible value of \( n \) ?
(A) 7 (B) 14 (C) 21 (D) 35 (E) 70

(D) 45 (E) 50
已知三角形 \( {BEF} \) 的面积为 5 平方单位,请问三角形 \( {ABC} \) 的面积为多少平方单位?
In the triangle \( {ABC} \) shown, \( D \) is the midpoint of \( {AC}, E \) is the midpoint of \( {BD} \) and \( F \) is the midpoint of \( {AE} \) .
If the area of triangle \( {BEF} \) is 5 , what is the area of triangle \( {ABC} \) ?
(A) 30 (B) 35 (C) 40

21-25 题,每题 5 分
Questions 21 to 25,5 marks each
检测结果表示在下面表格中。



Humidity 湿度 Temperature 温度
请问哪个星期的细菌数量达到最高峰?
(A) A 星期 (B) B 星期 (C) C 星期 (D) D 星期 (E) E 星期
During which week was the bacteria population highest?
(A) week A (B) week B (C) week C (D) week D (E) week E
但每个人阅读的书都各不相同。
已知 \( \mathrm{A} \) 阅读的数量是 \( \mathrm{E} \) 的两倍、 \( \mathrm{D} \) 阅读的数量是 \( \mathrm{B} \) 的两倍、 \( \mathrm{C} \) 阅读的数量
等于 \( \mathrm{D} \) 与 \( \mathrm{E} \) 阅读数量的总和。
请问哪个人恰好阅读了八本书?
(A) A (B) B (C) \( \mathrm{C} \) (D) D (E) \( \mathrm{E} \)
Five friends read a total of 40 books between them over the holidays. Everyone read at least one book but no-one read the same book as anyone else.
Asilata read twice as many books as Eammon. Dane read twice as many as Bettina. Collette read as many as Dane and Eammon put together.
Who read exactly eight books?
(A) Asilata (B) Bettina (C) Colette (D) Dane (E) Eammon
There are 5 sticks of length \( 2\mathrm{\;{cm}},3\mathrm{\;{cm}},4\mathrm{\;{cm}},5\mathrm{\;{cm}} \) and \( 8\mathrm{\;{cm}} \) . Three sticks are chosen randomly. What is the probability that a triangle can be formed with the chosen sticks?
(A) 0.25 (B) 0.3 (C) 0.4 (D) 0.5 (E) 0.6

内接于一个圆内。请问这个圆的半径是多少单位?
Five squares of unit area are circumscribed by a circle as shown.
What is the radius of the circle?
(A) \( \frac{3}{2} \) (B) \( \frac{2\sqrt{5}}{3} \) (C) \( \frac{\sqrt{10}}{2} \) (D) \( \frac{\sqrt{13}}{2} \) (E) \( \frac{\sqrt{185}}{8} \)
\[ 9 + {99} + {999} + {9999} + \cdots + \underset{{2019}\text{ 个九 }}{\underbrace{{99}\ldots 9}} + \underset{{2020}\text{ 个九 }}{\underbrace{{99}\ldots 9}} \]
请问数字 1 在答案中重复出现了几次?
Alex writes down the value of the following sum, where the final term is the number consisting of 2020 consecutive nines:
\[ 9 + {99} + {999} + {9999} + \cdots + \underset{{2019}\text{ nines }}{\underbrace{{99}\ldots 9}} + \underset{{2020}\text{ nines }}{\underbrace{{99}\ldots 9}} \]
How many times does the digit 1 appear in the answer?
(A) 0 (B) 2016 (C) 2018 (D) 2020 (E) 2021
问题 26-30 的答案为 000-999 之间的整数, 请将答案填在答案卡上对应的位置。
第 26 题占 6 分, 第 27 题占 7 分, 第 28 题占 8 分, 第 29 题占 9 分,第 30 题占 10 分。
For questions 26 to 30, shade the answer as an integer from 0 to 999 in the space provided on the answer sheet.
Questions 26-30 are worth 6, 7, 8, 9 and 10 marks, respectively. 26. 若 \( n \) 是一个正整数,定义 \( n \) ! 为从 1 到 \( n \) 所有整数的积。例如, \( 4! = 4 \times 3 \times 2 \times 1 = \) 24。请问算式 \( 1! + 2! + 3! + \ldots + {2020}! \) 的结果最右侧的三位数字是什么?
If \( n \) is a positive integer, \( n \) ! nd by multiplying the integers from 1 to \( n \) . For example, \( 4! = 4 \times 3 \times 2 \times 1 = {24} \) .
What are the three rightmost digits of the sum \( 1! + 2! + 3! + \cdots + {2020}! \) ?


内部的四个三角形互相重叠在一起, 但外部的四个三角形则互不重叠。
请问中间未涂色正方形的面积为多少 \( {\mathrm{{cm}}}^{2} \) ?
Eight identical right-angled triangles with side lengths \( {30}\mathrm{\;{cm}},{40}\mathrm{\;{cm}} \) and \( {50}\mathrm{\;{cm}} \) are arranged as shown.
The inner four triangles are made to overlap each other, but the outer four triangles do not overlap any of the others.
What is the area, in square centimetres, of the unshaded centre square?


右图是一个失败的试验品, 因为两片黄色碎布的顶点有接触。
请问我总共有多少种不同的方法可以正确排列这些碎布?
My grandson makes wall hangings by stitching together 16 square patches of fabric into a \( 4 \times 4 \) grid. I asked him to use patches of red, blue, green and yellow, but to ensure that no patch touches another of the same colour, not even diagonally.
The picture shows an attempt which fails only because two yellow patches touch diagonally.
In how many different ways can my grandson choose to arrange the coloured patches correctly?

例如, 右图时钟显示的时刻可以看成下午 7: 23 或者下午 4: 37, 所以这一刻的时间是不确定的。然而, 下午12: 00 是确定的, 因为此刻时针和分针是重叠在一起的。
请问从中午到午夜这 12 小时内,总共会出现几个不确定的时刻?
For instance, the clock shown can be seen at approximately \( {7.23}\mathrm{{pm}} \) and \( {4.37}\mathrm{{pm}} \) so both of these times are ambiguous. However, \( {12.00}\mathrm{{pm}} \) is not ambiguous, since both hands are together.
How many ambiguous times happen in the 12 hours from midday to midnight?