2022
AUSTRALIAN MATHEMATICS COMPETITION
Instructions and Information [ 0 0 0
General O O O O
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O
考生禁止携带计算器、数学模板尺、手机或其他计算工具, 允许使用草稿纸、坐标纸、 直尺和圆规。
这是一场比赛,而不是一场测验,你无需在规定时间内做完全部题目。你只会与你所在年级的参赛者进行评比,所以即使做同一份试卷,所在年级不同也不会一同评比。
务必仔细O O 答题卡上的O O O O 。确保O O O O O O 姓名、在读学校、考试等级、考试年级和准考证号。
Integrity of the competition
The AMT reserves the right to re-examine students before deciding whether to grant official status to their score.
Reminder
You may sit this competition once, in one division only, or risk no score.
AUSTRALIAN
MATHS TRUST
Intermediate
Grades 10-11
TIME ALLOWED
75 minutes
The answer sheet 答题卡说明
使用 2B 铅笔正确填涂准考证号和答案。
将答案全部涂在答题卡上(在试卷上作答无效)。
你的答题卡将通过扫卡机进行扫描,读卡机会读出答题卡上的所有标记,所以不要在答题卡上乱写乱画。修改答案时务必用橡皮擦干净,保持答题卡清洁。
Intermediate Division
1-10 题, 每题 3 分
Questions 1 to10,3marks each
\( {2220} - {2022} = \)
(A) 18 (B) 188 (C) 198 (D) 200 (E) 202

(A) 52 (B) 58 (C) 60
(D) 68 (E) 72
In how many minutes will it be midnight?
(A) 158 (B) 218 (C) 258 (D) 278 (E) 378
The value of \( \frac{{1}^{2} + {2}^{2}}{{3}^{2} + {4}^{2}} \) is
(A) \( \frac{1}{5} \) (B) \( \frac{3}{7} \) (C) \( \frac{9}{49} \) (D) 4 (E) 5

\( \angle {QPR} = {48}^{ \circ } \) 。
请问 \( \angle {PQR} \) 的度数是多少?
In the triangle \( {PQR} \) shown, \( {PQ} = {PR} \) and \( \angle {QPR} = {48}^{ \circ } \) . What is \( \angle {PQR} \) ?
(A) \( {60}^{ \circ } \) (B) 66° (C) \( {72}^{ \circ } \) (D) 78° (E) \( {84}^{ \circ } \)

What fraction of this rectangle is shaded?
(A) \( \frac{1}{2} \) (B) \( \frac{5}{8} \) (C) \( \frac{5}{6} \) (D) \( \frac{2}{3} \) (E) \( \frac{7}{12} \)
\( {\left( {0.4}\right) }^{2} + {\left( {0.1}\right) }^{2} = \)
(A) 0.25 (B) 1.7 (C) 0.17 (D) 1 (E) 0.26
现有储备的汽油足够使用 60 天。
请问 0 0 0 还需要购买多少汽油才能有足够 90 天的储备 0 ?
(A) 4 百万升 (B) 4.8 百万升 (C) 480 0 0 升
(D) 160 0 0 升 (E) 4800 I I I
Australia uses 160 million litres of petrol each day.
There is enough petrol stored to last 60 days.
How much more petrol does Australia need to buy to have enough stored for 90 days?
(A) 4 million litres (B) 4.8 million litres (C) 480 million litres
(D) 160 million litres (E) 4800 million litres
\( \frac{2022}{2} - \frac{2022}{3} = \)
(A) 337 (B) 674 (C) 2022 (D) -2022 (E) -674
\[ \bigtriangleup + \bigtriangleup + \bigtriangleup = {27}{x}^{3}{y}^{6} \]
Which algebraic term should replace \( \bigtriangleup \) in the equation below?
\[ \bigtriangleup + \bigtriangleup + \bigtriangleup = {27}{x}^{3}{y}^{6} \]
(A) \( {3x}{y}^{2} \) (B) \( 3{x}^{3}{y}^{6} \) (C) \( {9x}{y}^{2} \) (D) \( 9{x}^{3}{y}^{6} \) (E) \( {27x}{y}^{2} \)
11-20 题, 每题 4 分 Questions 11 to 20, 4 marks each

(D)(5,6) (E)(7,8)
Three vertices of a rectangle are the points(1,4), (7,4)and(1,8). At which point do the diagonals of the rectangle cross?
(A)(4,6) (B)(3,2) (C)(3,1) 12. 请问在方格内填入哪个数才能使得此等式成立? What value should be placed in the box to satisfy the equation? (A) 1 (B) \( 1\frac{1}{2} \) (C) 2 (D) \( 2\frac{1}{2} \) (E) 3


The angles of a triangle are in the ratio \( 2 : 3 : 4 \) . What is the size of the largest angle in degrees?
(A) 40 (B) 45 (C) 72 (D) 80 (E) 90

In this puzzle, each circle should contain an integer. Each of the five lines of four circles should add to 40 . When the puzzle is completed, what is the largest number used?
(A) 15 (B) 16 (C) 17 (D) 18 (E) 19
请问他们两人的路程总 0 是 0 0 ?
Daniel and Luke arrange to meet at a cafe. Luke leaves work, walking at \( 6\mathrm{\;{km}}/\mathrm{h} \) . Five minutes later, Daniel starts cycling from his flat at \( {20}\mathrm{\;{km}}/\mathrm{h} \) . A further 15 minutes later, both arrive at the cafe at the same time.
What is the total distance they travelled?
(A) \( {5.5}\mathrm{\;{km}} \) (B) \( 6\mathrm{\;{km}} \) (C) \( {6.5}\mathrm{\;{km}} \) (D) \( 7\mathrm{\;{km}} \) (E) \( {7.5}\mathrm{\;{km}} \)
My family of 7 adults and 5 children gather each year to celebrate Chinese MidAutumn festival. Each adult gives one gift to everyone else. Each child gives one gift to every other child. How many gifts are given?
(A) 78 (B) 85 (C) 97 (D) 102 (E) 109

- 第一次转出的值组成这个数的十位数;
- 如果第二次转出的值大于第一次转出的值, 则组成这个两位数的个位数;
- 如果第二次转出的值不大于第一次转出的值, 则把十位上的数字重复作为个位数。
请问组成的两位数可以被 11 整除的概率是多少?
This spinner is spun twice to form a two-digit number using the following rules:
- The first value spun forms the tens digit of a number.
- If the second value rolled is larger than the first, it becomes the units digit of a number.
- If the second value spun is not larger than the first, the tens digit is repeated as the units digit.
What is the probability that the resulting two-digit number is divisible by 11?
(A) \( \frac{1}{4} \) (B) \( \frac{3}{8} \) (C) \( \frac{1}{2} \) (D) \( \frac{5}{8} \) (E) \( \frac{9}{16} \)

请问阴影部分的面积是多少?
Eight overlapping unit squares are drawn to produce a flower shape as shown. The parts where two squares overlap are isosceles triangles. What is the total shaded area?
(A) 5 (B) \( 5\frac{1}{2} \) (C) 6 (D) \( 6\frac{1}{2} \) (E) 7
两星期前, 小雷已经学习的天数是小尼的五倍。
两天前, 小雷已经学习的天数是小尼的两倍。
今天, 请问小雷至今已经学习的天数加上小尼至今已经学习的天数之和是多少天?
(A) 25 (B) 37 (C) 46 (D) 52 (E) 68
Rick and Nic started learning guitar recently.
Two weeks ago, Rick had been learning five times as long as Nic.
Two days ago, Rick had been learning twice as long as Nic.
Today, what is the number of days that Rick has been learning plus the number of days that Nic has been learning?
(A) 25 (B) 37 (C) 46 (D) 52 (E) 68

\( 4 : 3 \) 的图像呈现在 \( {16} : 9 \) 的屏幕上
\( 4 : 3 \) image on a \( {16} : 9 \) screen

\( {16} : 9 \) 的图像呈现在 \( 4 : 3 \) 的屏幕上
16: 9 image on a 4:3 screen
如果 \( \ell \) 表示左图中黑色部分在图中占的比例, \( r \) 表示右图中黑色部分在图中占的 比例,请问 \( \ell : r \) 等于多少?
Over the last 20 years, the standard ratio of television screens has changed from 4 : 3 to 16: 9. When the ratio of content doesn't match the ratio of the screen it is being viewed on, black bars are often used to compensate, as illustrated.
If \( \ell \) is the fraction of the screen blacked out in the left diagram, and \( r \) is the fraction of the screen blacked out in the right diagram, then the ratio \( \ell : r \) equals
(A) \( 3 : 4 \) (B) \( 8 : 9 \) (C) \( 1 : 1 \) (D) \( 9 : 8 \) (E) \( 4 : 3 \)
21-25 题,每题 5 分
Questions 21 to 25, 5 marks each

The horizontal base is an equilateral triangle with sides 8 metres. The apex is 1 metre directly above one corner of the base, so that two faces are vertical. In square metres, what is the area of the sloping face?
(A) \( {16}\sqrt{3} \) (B) 28 (C) \( \frac{65}{4}\sqrt{3} \) (D) \( 4\sqrt{33} \) (E) 32
\[ \sqrt[3]{\frac{\left( {1 \times 2 \times 4}\right) + \left( {2 \times 4 \times 8}\right) + \cdots + \left( {n \times {2n} \times {4n}}\right) }{\left( {1 \times 3 \times 9}\right) + \left( {2 \times 6 \times {18}}\right) + \cdots + \left( {n \times {3n} \times {9n}}\right) }} \]
What is the value of the following expression when \( n = {2022} \) ?
\[ \sqrt[3]{\frac{\left( {1 \times 2 \times 4}\right) + \left( {2 \times 4 \times 8}\right) + \cdots + \left( {n \times {2n} \times {4n}}\right) }{\left( {1 \times 3 \times 9}\right) + \left( {2 \times 6 \times {18}}\right) + \cdots + \left( {n \times {3n} \times {9n}}\right) }} \]
(A) \( \frac{1}{2} \) (B) \( \frac{2}{3} \) (C) \( \frac{3}{4} \) (D) \( \frac{4}{5} \) (E) \( \frac{5}{6} \)
请问原先桶内有多少 \( \mathrm{L} \) 的牛奶?
Lisa has a mixture of water and milk in a drum in the ratio 5 : 7. She accidentally spills \( 9\mathrm{\;L} \) of this mixture.
She then fills the drum with \( 9\mathrm{\;L} \) of water. This makes the water to milk ratio \( 9 : 7 \) . How many litres of milk were in the drum originally?
(A) 20 (B) 21 (C) 24 (D) 36 (E) 40
(A) \( {pq} \) (B) \( {qr} \) (C) \( {rt} \) (D) \( {pr} \) (E) \( {pt} \)

(A) 1 (B) 2 (C) 6 (D) 8 (E) 16 问题 26-30 的答案为 000-999 之间的整数, 请将答案填在答案卡上对应的位置。 第 26 题占 6 分, 第 27 题占 7 分, 第 28 题占 8 分, 第 29 题占 9 分,第 30 题占 10 分。 For questions 26 to 30, the answer is an integer from 000 to 999 . Questions 26-30 are worth 6, 7, 8, 9 and 10 marks, respectively. 26. ( 0 0 0 0 0 0 中, \( a \) 、 \( b \) ) \( c \) ) 0 非零0)。 请问这个 0 0 第二行的三位数 \( {abc} \) 是 0 0 ? In the sum shown, \( a, b \) and \( c \) are nonzero digits. What is the three-digit number \( {abc} \) in the second line of the sum? 27. 将 0 0 数相乘后,请问所得 0 0 的 0 0 0 0 0 0 0 和是 0 0 ? When these numbers are multiplied, what is the sum of all digits in the answer?



In how many ways can 100 be written as the sum of three different positive integers? Note that we do not consider sums formed by reordering the terms to be different, so that \( {34} + 5 + {61} \) and \( {61} + {34} + 5 \) are treated as the same sum.
What is the largest number of distinct elements that you can choose from the set \( \{ 1,2,3,4,\ldots ,{1000}\} \) such that no three of them are the side lengths of a triangle? For example the selection could include 20, 22 and 42 , since there is no triangle with sides 20, 22 and 42 .

请问要将菲菲从小艾传递到小柏手中总共有多少条不同的路径?
Students sit at their desks in three rows of eight. Felix, the class pet, must be passed to each student exactly once, starting with Alex in one corner and finishing with Bryn in the opposite corner. Each student can pass only to the immediate neighbour left, right, in front or behind. One possible path is shown. How many different paths can Felix take from Alex to Bryn?