不定积分练习题 – 掌握积分符号与幂函数积分
Find the following indefinite integrals:
a. \( \int x^4 \, dx \) (2 marks)
b. \( \int x^{-2} \, dx \) (2 marks)
a. 使用幂函数积分公式:\( \int x^n \, dx = \frac{x^{n+1}}{n+1} + c \)
当 \( n = 4 \) 时:\( \int x^4 \, dx = \frac{x^{4+1}}{4+1} + c = \frac{x^5}{5} + c \)
b. 当 \( n = -2 \) 时:\( \int x^{-2} \, dx = \frac{x^{-2+1}}{-2+1} + c = \frac{x^{-1}}{-1} + c = -\frac{1}{x} + c \)
Find the following indefinite integrals:
a. \( \int x^{\frac{1}{3}} \, dx \) (2 marks)
b. \( \int x^{-\frac{3}{2}} \, dx \) (2 marks)
a. 当 \( n = \frac{1}{3} \) 时:\( \int x^{\frac{1}{3}} \, dx = \frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1} + c = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} + c = \frac{3}{4}x^{\frac{4}{3}} + c \)
b. 当 \( n = -\frac{3}{2} \) 时:\( \int x^{-\frac{3}{2}} \, dx = \frac{x^{-\frac{3}{2}+1}}{-\frac{3}{2}+1} + c = \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + c = -2x^{-\frac{1}{2}} + c = -\frac{2}{\sqrt{x}} + c \)
Find the following indefinite integrals:
a. \( \int 3x^2 \, dx \) (2 marks)
b. \( \int -5x^{-4} \, dx \) (2 marks)
a. 系数3可以提取:\( \int 3x^2 \, dx = 3 \int x^2 \, dx = 3 \cdot \frac{x^3}{3} + c = x^3 + c \)
b. 系数-5可以提取:\( \int -5x^{-4} \, dx = -5 \int x^{-4} \, dx = -5 \cdot \frac{x^{-3}}{-3} + c = \frac{5}{3}x^{-3} + c = \frac{5}{3x^3} + c \)
Find \( \int \frac{2}{x^3} \, dx \). (3 marks)
先将 \( \frac{2}{x^3} \) 改写为 \( 2x^{-3} \):
\( \int \frac{2}{x^3} \, dx = \int 2x^{-3} \, dx = 2 \int x^{-3} \, dx = 2 \cdot \frac{x^{-2}}{-2} + c = -x^{-2} + c = -\frac{1}{x^2} + c \)
Find \( \int (x^3 + 2x^2 - 5x + 1) \, dx \). (4 marks)
逐项积分:
\( \int (x^3 + 2x^2 - 5x + 1) \, dx = \int x^3 \, dx + \int 2x^2 \, dx + \int (-5x) \, dx + \int 1 \, dx \)
\( = \frac{x^4}{4} + 2 \cdot \frac{x^3}{3} - 5 \cdot \frac{x^2}{2} + x + c \)
\( = \frac{x^4}{4} + \frac{2x^3}{3} - \frac{5x^2}{2} + x + c \)
Find \( \int \left( 3\sqrt{x} - \frac{4}{x^2} + 2x \right) dx \). (4 marks)
先将各项改写为幂函数形式:
\( 3\sqrt{x} = 3x^{\frac{1}{2}} \),\( \frac{4}{x^2} = 4x^{-2} \)
逐项积分:
\( \int \left( 3x^{\frac{1}{2}} - 4x^{-2} + 2x \right) dx = 3 \int x^{\frac{1}{2}} \, dx - 4 \int x^{-2} \, dx + 2 \int x \, dx \)
\( = 3 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - 4 \cdot \frac{x^{-1}}{-1} + 2 \cdot \frac{x^2}{2} + c \)
\( = 2x^{\frac{3}{2}} + \frac{4}{x} + x^2 + c \)
Find \( \int x(x + 3) \, dx \). (3 marks)
第一步:展开被积函数:
\( x(x + 3) = x^2 + 3x \)
第二步:逐项积分:
\( \int (x^2 + 3x) \, dx = \int x^2 \, dx + \int 3x \, dx = \frac{x^3}{3} + 3 \cdot \frac{x^2}{2} + c = \frac{x^3}{3} + \frac{3x^2}{2} + c \)
Find \( \int \left( x + \frac{1}{x} \right)^2 dx \). (4 marks)
第一步:展开被积函数:
\( \left( x + \frac{1}{x} \right)^2 = x^2 + 2x \cdot \frac{1}{x} + \frac{1}{x^2} = x^2 + 2 + x^{-2} \)
第二步:逐项积分:
\( \int (x^2 + 2 + x^{-2}) \, dx = \int x^2 \, dx + \int 2 \, dx + \int x^{-2} \, dx \)
\( = \frac{x^3}{3} + 2x + \frac{x^{-1}}{-1} + c = \frac{x^3}{3} + 2x - \frac{1}{x} + c \)
Given that \( \frac{dy}{dx} = 4x^3 - 6x + 2 \), find \( y \) in terms of \( x \). (4 marks)
对 \( \frac{dy}{dx} = 4x^3 - 6x + 2 \) 两边积分:
\( y = \int (4x^3 - 6x + 2) \, dx \)
\( = 4 \int x^3 \, dx - 6 \int x \, dx + 2 \int 1 \, dx \)
\( = 4 \cdot \frac{x^4}{4} - 6 \cdot \frac{x^2}{2} + 2x + c \)
\( = x^4 - 3x^2 + 2x + c \)
Find \( \int \frac{x^3 - 2x + 1}{x^2} \, dx \). (4 marks)
第一步:化简被积函数:
\( \frac{x^3 - 2x + 1}{x^2} = \frac{x^3}{x^2} - \frac{2x}{x^2} + \frac{1}{x^2} = x - 2x^{-1} + x^{-2} \)
第二步:逐项积分:
\( \int (x - 2x^{-1} + x^{-2}) \, dx = \int x \, dx - 2 \int x^{-1} \, dx + \int x^{-2} \, dx \)
\( = \frac{x^2}{2} - 2 \ln|x| + \frac{x^{-1}}{-1} + c = \frac{x^2}{2} - 2\ln|x| - \frac{1}{x} + c \)
注意:\( \int x^{-1} \, dx = \ln|x| + c \)(特殊情况,\( n = -1 \))
题目:Find the following indefinite integrals: a. \( \int x^4 \, dx \), b. \( \int x^{-2} \, dx \)
解答过程:
a. 使用幂函数积分公式:\( \int x^n \, dx = \frac{x^{n+1}}{n+1} + c \)
当 \( n = 4 \) 时:\( \int x^4 \, dx = \frac{x^{4+1}}{4+1} + c = \frac{x^5}{5} + c \)
b. 当 \( n = -2 \) 时:\( \int x^{-2} \, dx = \frac{x^{-2+1}}{-2+1} + c = \frac{x^{-1}}{-1} + c = -\frac{1}{x} + c \)
答案:a. \( \frac{x^5}{5} + c \),b. \( -\frac{1}{x} + c \)
题目:Find the following indefinite integrals: a. \( \int x^{\frac{1}{3}} \, dx \), b. \( \int x^{-\frac{3}{2}} \, dx \)
解答过程:
a. 当 \( n = \frac{1}{3} \) 时:\( \int x^{\frac{1}{3}} \, dx = \frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1} + c = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} + c = \frac{3}{4}x^{\frac{4}{3}} + c \)
b. 当 \( n = -\frac{3}{2} \) 时:\( \int x^{-\frac{3}{2}} \, dx = \frac{x^{-\frac{3}{2}+1}}{-\frac{3}{2}+1} + c = \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + c = -2x^{-\frac{1}{2}} + c = -\frac{2}{\sqrt{x}} + c \)
答案:a. \( \frac{3}{4}x^{\frac{4}{3}} + c \),b. \( -\frac{2}{\sqrt{x}} + c \)
题目:Find the following indefinite integrals: a. \( \int 3x^2 \, dx \), b. \( \int -5x^{-4} \, dx \)
解答过程:
a. 系数3可以提取:\( \int 3x^2 \, dx = 3 \int x^2 \, dx = 3 \cdot \frac{x^3}{3} + c = x^3 + c \)
b. 系数-5可以提取:\( \int -5x^{-4} \, dx = -5 \int x^{-4} \, dx = -5 \cdot \frac{x^{-3}}{-3} + c = \frac{5}{3}x^{-3} + c = \frac{5}{3x^3} + c \)
答案:a. \( x^3 + c \),b. \( \frac{5}{3x^3} + c \)
题目:Find \( \int \frac{2}{x^3} \, dx \)
解答过程:
先将 \( \frac{2}{x^3} \) 改写为 \( 2x^{-3} \):
\( \int \frac{2}{x^3} \, dx = \int 2x^{-3} \, dx = 2 \int x^{-3} \, dx = 2 \cdot \frac{x^{-2}}{-2} + c = -x^{-2} + c = -\frac{1}{x^2} + c \)
答案:\( -\frac{1}{x^2} + c \)
题目:Find \( \int (x^3 + 2x^2 - 5x + 1) \, dx \)
解答过程:
逐项积分:
\( \int (x^3 + 2x^2 - 5x + 1) \, dx = \int x^3 \, dx + \int 2x^2 \, dx + \int (-5x) \, dx + \int 1 \, dx \)
\( = \frac{x^4}{4} + 2 \cdot \frac{x^3}{3} - 5 \cdot \frac{x^2}{2} + x + c \)
\( = \frac{x^4}{4} + \frac{2x^3}{3} - \frac{5x^2}{2} + x + c \)
答案:\( \frac{x^4}{4} + \frac{2x^3}{3} - \frac{5x^2}{2} + x + c \)
题目:Find \( \int \left( 3\sqrt{x} - \frac{4}{x^2} + 2x \right) dx \)
解答过程:
先将各项改写为幂函数形式:
\( 3\sqrt{x} = 3x^{\frac{1}{2}} \),\( \frac{4}{x^2} = 4x^{-2} \)
逐项积分:
\( \int \left( 3x^{\frac{1}{2}} - 4x^{-2} + 2x \right) dx = 3 \int x^{\frac{1}{2}} \, dx - 4 \int x^{-2} \, dx + 2 \int x \, dx \)
\( = 3 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - 4 \cdot \frac{x^{-1}}{-1} + 2 \cdot \frac{x^2}{2} + c \)
\( = 2x^{\frac{3}{2}} + \frac{4}{x} + x^2 + c \)
答案:\( 2x^{\frac{3}{2}} + \frac{4}{x} + x^2 + c \)
题目:Find \( \int x(x + 3) \, dx \)
解答过程:
第一步:展开被积函数:
\( x(x + 3) = x^2 + 3x \)
第二步:逐项积分:
\( \int (x^2 + 3x) \, dx = \int x^2 \, dx + \int 3x \, dx = \frac{x^3}{3} + 3 \cdot \frac{x^2}{2} + c = \frac{x^3}{3} + \frac{3x^2}{2} + c \)
答案:\( \frac{x^3}{3} + \frac{3x^2}{2} + c \)
题目:Find \( \int \left( x + \frac{1}{x} \right)^2 dx \)
解答过程:
第一步:展开被积函数:
\( \left( x + \frac{1}{x} \right)^2 = x^2 + 2x \cdot \frac{1}{x} + \frac{1}{x^2} = x^2 + 2 + x^{-2} \)
第二步:逐项积分:
\( \int (x^2 + 2 + x^{-2}) \, dx = \int x^2 \, dx + \int 2 \, dx + \int x^{-2} \, dx \)
\( = \frac{x^3}{3} + 2x + \frac{x^{-1}}{-1} + c = \frac{x^3}{3} + 2x - \frac{1}{x} + c \)
答案:\( \frac{x^3}{3} + 2x - \frac{1}{x} + c \)
题目:Given that \( \frac{dy}{dx} = 4x^3 - 6x + 2 \), find \( y \) in terms of \( x \)
解答过程:
对 \( \frac{dy}{dx} = 4x^3 - 6x + 2 \) 两边积分:
\( y = \int (4x^3 - 6x + 2) \, dx \)
\( = 4 \int x^3 \, dx - 6 \int x \, dx + 2 \int 1 \, dx \)
\( = 4 \cdot \frac{x^4}{4} - 6 \cdot \frac{x^2}{2} + 2x + c \)
\( = x^4 - 3x^2 + 2x + c \)
答案:\( y = x^4 - 3x^2 + 2x + c \)
题目:Find \( \int \frac{x^3 - 2x + 1}{x^2} \, dx \)
解答过程:
第一步:化简被积函数:
\( \frac{x^3 - 2x + 1}{x^2} = \frac{x^3}{x^2} - \frac{2x}{x^2} + \frac{1}{x^2} = x - 2x^{-1} + x^{-2} \)
第二步:逐项积分:
\( \int (x - 2x^{-1} + x^{-2}) \, dx = \int x \, dx - 2 \int x^{-1} \, dx + \int x^{-2} \, dx \)
\( = \frac{x^2}{2} - 2 \ln|x| + \frac{x^{-1}}{-1} + c = \frac{x^2}{2} - 2\ln|x| - \frac{1}{x} + c \)
注意:\( \int x^{-1} \, dx = \ln|x| + c \)(特殊情况,\( n = -1 \))
答案:\( \frac{x^2}{2} - 2\ln|x| - \frac{1}{x} + c \)
通过这些练习题,我们系统掌握了不定积分的核心技能,包括幂函数积分、含系数积分、多项式逐项积分和复杂表达式的化简积分。重点掌握了:
核心技能:幂函数积分公式、逐项积分法则、系数提取、表达式化简、特殊情况处理
这些练习题涵盖了不定积分的各个重要方面,通过实际计算可以加深对积分概念的理解,为后续定积分学习打下坚实基础。