积分章节综合练习 - 巩固核心知识点
a. 求 \( \int (x + 1)(2x - 5) \, dx \) (4 marks)
b. 求 \( \int (x^{\frac{1}{3}} + x^{-\frac{1}{3}}) \, dx \) (3 marks)
a. 先展开 \( (x + 1)(2x - 5) \) 得 \( 2x^2 - 3x - 5 \),再逐项积分:
\( \int (2x^2 - 3x - 5) \, dx = \frac{2}{3}x^3 - \frac{3}{2}x^2 - 5x + c \)
b. 逐项积分 \( x^{\frac{1}{3}} \) 和 \( x^{-\frac{1}{3}} \):
\( \int (x^{\frac{1}{3}} + x^{-\frac{1}{3}}) \, dx = \frac{3}{4}x^{\frac{4}{3}} + \frac{3}{2}x^{\frac{2}{3}} + c \)
曲线 \( y = f(x) \) 过点 \( (1, 1) \),且 \( f'(x) = x^2 - 3x - \frac{2}{x^2} \),求曲线方程。 (5 marks)
步骤1:积分求原函数(含 \( c \))
对 \( f'(x) = x^2 - 3x - \frac{2}{x^2} \) 积分:
\( f(x) = \int (x^2 - 3x - 2x^{-2}) \, dx = \frac{1}{3}x^3 - \frac{3}{2}x^2 + \frac{2}{x} + c \)
步骤2:代入已知点求 \( c \)
曲线过点 \( (1, 1) \),即 \( x=1 \) 时 \( y=1 \),代入得:
\( 1 = \frac{1}{3} \cdot 1^3 - \frac{3}{2} \cdot 1^2 + \frac{2}{1} + c \)
\( 1 = \frac{1}{3} - \frac{3}{2} + 2 + c = \frac{2}{6} - \frac{9}{6} + \frac{12}{6} + c = \frac{5}{6} + c \)
\( c = 1 - \frac{5}{6} = \frac{1}{6} \)
步骤3:最终方程
\( y = \frac{1}{3}x^3 - \frac{3}{2}x^2 + \frac{2}{x} + \frac{1}{6} \)
a. 求 \( \int (8x^3 - 6x^2 + 5) \, dx \) (3 marks)
b. 求 \( \int (5x + 2)x^{\frac{1}{2}} \, dx \) (4 marks)
a. 逐项积分 \( 8x^3 - 6x^2 + 5 \):
\( \int (8x^3 - 6x^2 + 5) \, dx = 8 \cdot \frac{x^4}{4} - 6 \cdot \frac{x^3}{3} + 5x + c = 2x^4 - 2x^3 + 5x + c \)
b. 先展开 \( (5x + 2)x^{\frac{1}{2}} \) 得 \( 5x^{\frac{3}{2}} + 2x^{\frac{1}{2}} \),再逐项积分:
\( \int (5x^{\frac{3}{2}} + 2x^{\frac{1}{2}}) \, dx = 5 \cdot \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + 2 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c \)
\( = 2x^{\frac{5}{2}} + \frac{4}{3}x^{\frac{3}{2}} + c \)
求 \( \int \frac{(x + 1)(2x - 3)}{\sqrt{x}} \, dx \)(\( x > 0 \)) (5 marks)
步骤1:化简被积函数
先展开分子:\( (x + 1)(2x - 3) = 2x^2 - 3x + 2x - 3 = 2x^2 - x - 3 \)
再除以 \( \sqrt{x} = x^{\frac{1}{2}} \):
\( \frac{2x^2 - x - 3}{x^{\frac{1}{2}}} = 2x^{\frac{3}{2}} - x^{\frac{1}{2}} - 3x^{-\frac{1}{2}} \)
步骤2:逐项积分
\( \int (2x^{\frac{3}{2}} - x^{\frac{1}{2}} - 3x^{-\frac{1}{2}}) \, dx \)
\( = 2 \cdot \frac{x^{\frac{5}{2}}}{\frac{5}{2}} - \frac{x^{\frac{3}{2}}}{\frac{3}{2}} - 3 \cdot \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + c \)
\( = \frac{4}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + c \)
\( = \frac{4}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} - 6\sqrt{x} + c \)
质点的位移 \( x \) 满足 \( \frac{dx}{dt} = (t + 1)^2 \),且 \( t = 2 \) 时 \( x = 0 \),求 \( t = 3 \) 时的位移。 (5 marks)
步骤1:积分求位移函数(含 \( c \))
先展开 \( (t + 1)^2 = t^2 + 2t + 1 \),再积分:
\( x(t) = \int (t^2 + 2t + 1) \, dt = \frac{1}{3}t^3 + t^2 + t + c \)
步骤2:代入 \( t = 2 \) 求 \( c \)
当 \( t = 2 \) 时 \( x = 0 \),代入得:
\( 0 = \frac{1}{3} \cdot 2^3 + 2^2 + 2 + c = \frac{8}{3} + 4 + 2 + c = \frac{8}{3} + 6 + c = \frac{26}{3} + c \)
\( c = -\frac{26}{3} \)
步骤3:求 \( t = 3 \) 时的位移
\( x(3) = \frac{1}{3} \cdot 3^3 + 3^2 + 3 - \frac{26}{3} = 9 + 9 + 3 - \frac{26}{3} = 21 - \frac{26}{3} = \frac{63}{3} - \frac{26}{3} = \frac{37}{3} \)
曲线 \( y^{\frac{1}{2}} = x^{\frac{1}{3}} + 3 \)(\( y > 0 \))
a. 证明 \( y = x^{\frac{2}{3}} + Ax^{\frac{1}{3}} + B \),求 \( A \) 和 \( B \) 的值 (3 marks)
b. 求 \( \int y \, dx \) (3 marks)
a. 对 \( y^{\frac{1}{2}} = x^{\frac{1}{3}} + 3 \) 两边平方:
\( y = (x^{\frac{1}{3}} + 3)^2 = (x^{\frac{1}{3}})^2 + 2 \cdot x^{\frac{1}{3}} \cdot 3 + 3^2 \)
\( = x^{\frac{2}{3}} + 6x^{\frac{1}{3}} + 9 \)
因此 \( A = 6 \),\( B = 9 \)
b. 逐项积分 \( y = x^{\frac{2}{3}} + 6x^{\frac{1}{3}} + 9 \):
\( \int y \, dx = \int (x^{\frac{2}{3}} + 6x^{\frac{1}{3}} + 9) \, dx \)
\( = \frac{x^{\frac{5}{3}}}{\frac{5}{3}} + 6 \cdot \frac{x^{\frac{4}{3}}}{\frac{4}{3}} + 9x + c \)
\( = \frac{3}{5}x^{\frac{5}{3}} + \frac{9}{2}x^{\frac{4}{3}} + 9x + c \)
曲线 \( y = (3\sqrt{x} - 4)^2 \)(\( x > 0 \))
a. 求 \( \frac{dy}{dx} \) (4 marks)
b. 求 \( \int y \, dx \) (4 marks)
a. 先展开 \( y = (3\sqrt{x} - 4)^2 \):
\( y = (3x^{\frac{1}{2}} - 4)^2 = 9x - 24x^{\frac{1}{2}} + 16 \)
求导:\( \frac{dy}{dx} = 9 - 24 \cdot \frac{1}{2}x^{-\frac{1}{2}} = 9 - 12x^{-\frac{1}{2}} = 9 - \frac{12}{\sqrt{x}} \)
b. 逐项积分 \( y = 9x - 24x^{\frac{1}{2}} + 16 \):
\( \int y \, dx = \int (9x - 24x^{\frac{1}{2}} + 16) \, dx \)
\( = 9 \cdot \frac{x^2}{2} - 24 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 16x + c \)
\( = \frac{9}{2}x^2 - 16x^{\frac{3}{2}} + 16x + c \)
若 \( \int \left( \frac{a}{3x^3} - abx \right) dx = -\frac{1}{6x^2} - \frac{7}{2}x^2 + c \),求 \( a \) 和 \( b \) 的值。 (5 marks)
步骤1:积分左边
\( \int \left( \frac{a}{3x^3} - abx \right) dx = \int \left( \frac{a}{3}x^{-3} - abx \right) dx \)
\( = \frac{a}{3} \cdot \frac{x^{-2}}{-2} - ab \cdot \frac{x^2}{2} + c \)
\( = -\frac{a}{6}x^{-2} - \frac{ab}{2}x^2 + c \)
\( = -\frac{a}{6x^2} - \frac{ab}{2}x^2 + c \)
步骤2:对比系数
与右边 \( -\frac{1}{6x^2} - \frac{7}{2}x^2 + c \) 对比:
\( -\frac{a}{6} = -\frac{1}{6} \implies a = 1 \)
\( -\frac{ab}{2} = -\frac{7}{2} \implies ab = 7 \)
由于 \( a = 1 \),所以 \( b = 7 \)
物体从高度70米处自由下落,重力加速度为9.8 m/s²,求3秒后的高度。 (5 marks)
步骤1:建立运动方程
加速度 \( a = -9.8 \) m/s²(向下为正)
速度 \( v(t) = \int a \, dt = \int (-9.8) \, dt = -9.8t + c_1 \)
位移 \( s(t) = \int v(t) \, dt = \int (-9.8t + c_1) \, dt = -4.9t^2 + c_1t + c_2 \)
步骤2:确定初始条件
\( t = 0 \) 时,\( s(0) = 70 \) m,\( v(0) = 0 \) m/s
\( v(0) = -9.8(0) + c_1 = 0 \implies c_1 = 0 \)
\( s(0) = -4.9(0)^2 + 0(0) + c_2 = 70 \implies c_2 = 70 \)
步骤3:求3秒后的高度
\( s(3) = -4.9(3)^2 + 70 = -4.9 \times 9 + 70 = -44.1 + 70 = 25.9 \) m
质点的速度 \( v(t) = 5 + 2t \) m/s,初始位移为0。
a. 求位移函数 \( s(t) \) (3 marks)
b. 求位移达到100米所需的时间 (4 marks)
a. 积分求位移函数:
\( s(t) = \int v(t) \, dt = \int (5 + 2t) \, dt = 5t + t^2 + c \)
由于初始位移为0,\( s(0) = 0 \),所以 \( c = 0 \)
因此 \( s(t) = 5t + t^2 \)
b. 求位移达到100米的时间:
令 \( s(t) = 100 \):\( 5t + t^2 = 100 \)
整理得:\( t^2 + 5t - 100 = 0 \)
使用求根公式:\( t = \frac{-5 \pm \sqrt{25 + 400}}{2} = \frac{-5 \pm \sqrt{425}}{2} = \frac{-5 \pm 5\sqrt{17}}{2} \)
取正根:\( t = \frac{-5 + 5\sqrt{17}}{2} \approx 7.8 \) 秒
题目:a. 求 \( \int (x + 1)(2x - 5) \, dx \),b. 求 \( \int (x^{\frac{1}{3}} + x^{-\frac{1}{3}}) \, dx \)
解答过程:
a. 先展开 \( (x + 1)(2x - 5) \) 得 \( 2x^2 - 3x - 5 \),再逐项积分:\( \frac{2}{3}x^3 - \frac{3}{2}x^2 - 5x + c \)
b. 逐项积分 \( x^{\frac{1}{3}} \) 和 \( x^{-\frac{1}{3}} \):\( \frac{3}{4}x^{\frac{4}{3}} + \frac{3}{2}x^{\frac{2}{3}} + c \)
答案:a. \( \frac{2}{3}x^3 - \frac{3}{2}x^2 - 5x + c \),b. \( \frac{3}{4}x^{\frac{4}{3}} + \frac{3}{2}x^{\frac{2}{3}} + c \)
题目:曲线 \( y = f(x) \) 过点 \( (1, 1) \),且 \( f'(x) = x^2 - 3x - \frac{2}{x^2} \),求曲线方程
解答过程:
积分得 \( f(x) = \frac{1}{3}x^3 - \frac{3}{2}x^2 + \frac{2}{x} + c \),代入点 \( (1, 1) \) 求得 \( c = \frac{1}{6} \)
答案:\( y = \frac{1}{3}x^3 - \frac{3}{2}x^2 + \frac{2}{x} + \frac{1}{6} \)
题目:a. 求 \( \int (8x^3 - 6x^2 + 5) \, dx \),b. 求 \( \int (5x + 2)x^{\frac{1}{2}} \, dx \)
解答过程:
a. 逐项积分 \( 8x^3 - 6x^2 + 5 \):\( 2x^4 - 2x^3 + 5x + c \)
b. 先展开 \( (5x + 2)x^{\frac{1}{2}} \) 得 \( 5x^{\frac{3}{2}} + 2x^{\frac{1}{2}} \),再逐项积分:\( 2x^{\frac{5}{2}} + \frac{4}{3}x^{\frac{3}{2}} + c \)
答案:a. \( 2x^4 - 2x^3 + 5x + c \),b. \( 2x^{\frac{5}{2}} + \frac{4}{3}x^{\frac{3}{2}} + c \)
题目:求 \( \int \frac{(x + 1)(2x - 3)}{\sqrt{x}} \, dx \)(\( x > 0 \))
解答过程:
先化简 \( \frac{(x + 1)(2x - 3)}{\sqrt{x}} \) 为 \( 2x^{\frac{3}{2}} - x^{\frac{1}{2}} - 3x^{-\frac{1}{2}} \),再逐项积分
答案:\( \frac{4}{5}x^{\frac{5}{2}} - \frac{2}{3}x^{\frac{3}{2}} - 6\sqrt{x} + c \)
题目:质点的位移 \( x \) 满足 \( \frac{dx}{dt} = (t + 1)^2 \),且 \( t = 2 \) 时 \( x = 0 \),求 \( t = 3 \) 时的位移
解答过程:
积分 \( \frac{dx}{dt} = (t + 1)^2 \) 得 \( x(t) = \frac{1}{3}t^3 + t^2 + t + c \),代入 \( t = 2, x = 0 \) 求得 \( c = -\frac{26}{3} \),再代入 \( t = 3 \) 得 \( x = \frac{37}{3} \)
答案:\( x = \frac{37}{3} \)
题目:曲线 \( y^{\frac{1}{2}} = x^{\frac{1}{3}} + 3 \)(\( y > 0 \))
解答过程:
a. 对 \( y^{\frac{1}{2}} = x^{\frac{1}{3}} + 3 \) 两边平方,得 \( y = x^{\frac{2}{3}} + 6x^{\frac{1}{3}} + 9 \),故 \( A = 6 \),\( B = 9 \)
b. 逐项积分 \( y = x^{\frac{2}{3}} + 6x^{\frac{1}{3}} + 9 \):\( \frac{3}{5}x^{\frac{5}{3}} + \frac{9}{2}x^{\frac{4}{3}} + 9x + c \)
答案:a. \( A = 6 \),\( B = 9 \),b. \( \frac{3}{5}x^{\frac{5}{3}} + \frac{9}{2}x^{\frac{4}{3}} + 9x + c \)
题目:曲线 \( y = (3\sqrt{x} - 4)^2 \)(\( x > 0 \))
解答过程:
a. 先平方得 \( y = 9x - 24x^{\frac{1}{2}} + 16 \),再求导得 \( \frac{dy}{dx} = 9 - \frac{12}{\sqrt{x}} \)
b. 逐项积分 \( y = 9x - 24x^{\frac{1}{2}} + 16 \):\( \frac{9}{2}x^2 - 16x^{\frac{3}{2}} + 16x + c \)
答案:a. \( \frac{dy}{dx} = 9 - \frac{12}{\sqrt{x}} \),b. \( \frac{9}{2}x^2 - 16x^{\frac{3}{2}} + 16x + c \)
题目:若 \( \int \left( \frac{a}{3x^3} - abx \right) dx = -\frac{1}{6x^2} - \frac{7}{2}x^2 + c \),求 \( a \) 和 \( b \) 的值
解答过程:
积分左边得 \( -\frac{a}{6x^2} - \frac{ab}{2}x^2 + c \),与右边对比系数,求得 \( a = 1 \),\( b = 7 \)
答案:\( a = 1 \),\( b = 7 \)
题目:物体从高度70米处自由下落,重力加速度为9.8 m/s²,求3秒后的高度
解答过程:
积分 \( f'(t) = -9.8t \) 得 \( f(t) = -4.9t^2 + c \),代入 \( f(0) = 70 \) 得 \( c = 70 \),再代入 \( t = 3 \) 得高度为25.9米
答案:25.9米
题目:质点的速度 \( v(t) = 5 + 2t \) m/s,初始位移为0
解答过程:
a. 积分 \( f'(t) = 5 + 2t \) 得 \( f(t) = t^2 + 5t \)(因 \( f(0) = 0 \),\( c = 0 \))
b. 令 \( t^2 + 5t = 100 \),解得正根 \( t = \frac{-5 + 5\sqrt{17}}{2} \approx 7.8 \) 秒
答案:a. \( s(t) = 5t + t^2 \),b. \( t = \frac{-5 + 5\sqrt{17}}{2} \approx 7.8 \) 秒
通过这些综合练习题,我们系统复习了积分章节的所有核心知识点,包括基础积分、多项式积分、确定积分常数、运动学应用等。重点掌握了:
核心技能:幂函数积分、逐项积分、确定积分常数、运动学积分应用、复杂表达式化简
这些综合练习题涵盖了积分章节的各个重要方面,通过实际计算可以加深对积分概念的理解,为后续定积分学习打下坚实基础。