8.1 Definite Integrals

练习题

Exercise 8A - 定积分基础练习

以下练习涵盖定积分的基本计算、含参数积分和实际应用问题。

Question 1 - 基础定积分计算

计算以下定积分:

a) \(\int_2^5 x^3 dx\)

b) \(\int_1^3 x^4 dx\)

c) \(\int_0^4 \sqrt{x} dx\)

d) \(\int_1^3 \frac{3}{x^2} dx\)

Question 2 - 复合函数积分

计算以下定积分:

a) \(\int_1^2 \left(\frac{2}{x^3} + 3x\right) dx\)

b) \(\int_0^2 (2x^3 - 4x + 5) dx\)

c) \(\int_4^9 \left(\sqrt{x} - \frac{6}{x^2}\right) dx\)

d) \(\int_1^8 (x^{-\frac{1}{3}} + 2x - 1) dx\)

Question 4 - 含参数积分

Given that \(A\) is a constant and \(\int_1^4 (6\sqrt{x} - A) dx = A^2\), show that there are two possible values for \(A\) and find these values.

Question 6 - 分数形式答案

Evaluate \(\int_4^{12} \frac{2}{\sqrt{x}} dx\), giving your answer in the form \(a + b\sqrt{3}\), where \(a\) and \(b\) are integers. (4 marks)

Question 7 - 含未知上限的积分

Given that \(\int_1^k \frac{1}{\sqrt{x}} dx = 3\), calculate the value of \(k\). (4 marks)

Question 8 - 实际应用问题

The speed, \(v \text{ m/s}\), of a train at time \(t\) seconds is given by \(v = 20 + 5t, 0 \leq t \leq 10\).

The distance, \(s\) metres, travelled by the train in 10 seconds is given by \(s = \int_0^{10} (20 + 5t) dt\). Find the value of \(s\).