直方图 - 分组连续数据的可视化表示
用于展示分组连续数据,可直观呈现数据的分布位置、形状和离散程度。
直方图中条形的面积与该组频率成正比,因此可用于组距不等的分组数据展示。
\(\text{频率密度} = \frac{\text{频率}}{\text{组宽}}\),直方图纵轴为频率密度。
连接每个条形顶端中点的折线,用于展示数据分布趋势。
通过计算"频率密度×组宽"(即条形面积)来估算某区间内的频数。
200 students were asked how long it took them to complete homework, with data summarised below:
| Time, \( t \) (minutes) | \( 25 \leq t < 30 \) | \( 30 \leq t < 35 \) | \( 35 \leq t < 40 \) | \( 40 \leq t < 50 \) | \( 50 \leq t < 80 \) |
|---|---|---|---|---|---|
| Frequency | 55 | 39 | 68 | 32 | 6 |
a) Draw a histogram and a frequency polygon to represent the data.
b) Estimate how many students took between 36 and 45 minutes to complete their homework.
(a)绘制直方图与频率多边形
先计算组宽和频率密度:
以"Time, \( t \) (min)"为横轴,"Frequency density"为纵轴绘制直方图;再连接每个条形顶端中点,得到频率多边形。
(b)估算36-45分钟的频数
将区间分为两段计算面积(频数):
A histogram displays data from 100 people on how long they took to complete a word puzzle (in minutes).
a) Why should a histogram be used to represent these data?
b) Write down the underlying feature associated with each bar in a histogram.
c) Given 5 people completed the puzzle between 2 and 3 minutes, find the number of people who completed it between 0 and 2 minutes.
a) 因为时间是连续数据,直方图适用于展示连续数据的分布。
b) 直方图中每个条形的面积与该组频率成正比。
c) 2-3分钟区间对应25个小方格,代表5人,因此1个小方格代表\( \frac{5}{25}=0.2 \)人。0-2分钟区间对应20个小方格,故频数为\( 20×0.2=4 \)人。