偏度 - 描述数据分布形状的重要指标
偏度用于描述数据集的分布形状,分为三类:
The following stem and leaf diagram shows the scores obtained by a group of students in a test.
| Score | Leaf | Key: \( 6 \mid 1 = 61 \) |
|---|---|---|
| 2 | 1 2 8 | (3) |
| 3 | 3 4 7 8 9 | (5) |
| 4 | 1 2 3 5 6 7 9 | (7) |
| 5 | 0 2 3 3 5 5 6 8 9 9 | (10) |
| 6 | 1 2 2 3 4 4 5 6 6 8 8 8 9 9 | (14) |
| 7 | 0 2 3 4 5 7 8 9 | (8) |
| 8 | 0 1 4 | (3) |
The modal value is 68, the mean is 57.46 and the standard deviation is 15.7 for these data.
a) Find the three quartiles for this data set.
b) Calculate the value of \( \frac{3(\text{mean} - \text{median})}{\text{standard deviation}} \) and comment on the skewness.
c) Use two further methods to show that the data are negatively skewed.
a) 计算四分位数:
总数据量 \( 3 + 5 + 7 + 10 + 14 + 8 + 3 = 50 \):
\[ \text{偏度} = \frac{3(\text{均值} - \text{中位数})}{\text{标准差}} \]
b) 偏度计算:
\[ \text{偏度} = \frac{3(57.46 - 60)}{15.7} ≈ \frac{3×(-2.54)}{15.7} ≈ -0.486 \]
结果为负,因此数据呈负偏态。
c) 其他两种方法: