集合符号 - 概率事件关系的简洁表达
在概率中,集合符号用于简洁描述事件关系,核心符号及含义如下:
独立事件:若A、B独立,则 \( P(A \cap B) = P(A) \times P(B) \)
互斥事件:若A、B互斥,则 \( A \cap B = \emptyset \),\( P(A \cup B) = P(A) + P(B) \)
补集关系:概率满足 \( P(A') = 1 - P(A) \)
集合符号可以清晰表达复杂的事件关系:
A card is selected at random from a pack of 52 playing cards. Let \( A \) be the event that the card is an Ace and \( D \) the event that the card is a diamond. Find:
a) \( P(A \cap D) \)
b) \( P(A \cup D) \)
c) \( P(A') \)
d) \( P(A' \cap D) \)
a) \( P(A \cap D) \)
\( A \cap D \)表示"方块A",一副牌中仅1张,故 \( P(A \cap D) = \frac{1}{52} \)。
b) \( P(A \cup D) \)
\( A \cup D \)表示"Ace或方块或两者",Ace有4张,方块有13张,重复1张(方块A),总数 \( 4 + 13 - 1 = 16 \),概率 \( P(A \cup D) = \frac{16}{52} = \frac{4}{13} \)。
c) \( P(A') \)
\( A' \)表示"不是Ace",非Ace牌有 \( 52 - 4 = 48 \)张,概率 \( P(A') = \frac{48}{52} = \frac{12}{13} \)。
d) \( P(A' \cap D) \)
\( A' \cap D \)表示"不是Ace的方块",方块共13张,减去方块A剩12张,概率 \( P(A' \cap D) = \frac{12}{52} = \frac{3}{13} \)。
a) Given that \( P(A) = 0.3 \), \( P(B) = 0.4 \) and \( P(A \cap B) = 0.25 \), explain why events \( A \) and \( B \) are not independent.
b) Given also that \( P(C) = 0.2 \), that events \( A \) and \( C \) are mutually exclusive and that events \( B \) and \( C \) are independent, draw a Venn diagram to illustrate the events \( A \), \( B \) and \( C \), showing the probabilities for each region.
c) Find \( P((A \cap B') \cup C) \)
a) 独立性判断
若\( A \)、\( B \)独立,需满足 \( P(A \cap B) = P(A) \times P(B) = 0.3 \times 0.4 = 0.12 \),但题目中 \( P(A \cap B) = 0.25 \neq 0.12 \),故\( A \)、\( B \)不独立。
b) 维恩图绘制
样本空间 \( \mathcal{E} \) (概率和为1)
三个圆形分别代表:事件 \( A \)、事件 \( B \)、事件 \( C \)
计算各区域概率:
c) \( P((A \cap B') \cup C) \)
\( A \cap B' \)是仅\( A \)的区域(0.05),\( C \)的区域为0.2(仅\( C \)和\( B \cap C \)),且两者互斥,故 \( P((A \cap B') \cup C) = 0.05 + 0.2 = 0.25 \)。
维恩图通过图形直观展示集合符号表示的事件关系:
对于三个事件,集合符号更加复杂:
集合符号帮助我们精确描述复杂的事件关系: