条件概率练习题 - 掌握条件概率计算和独立性判断
以下是精选的条件概率练习题,涵盖双向表、受限样本空间和独立性判断等核心内容。
The two-way table shows the fast-food preferences of 60 students in a school.
| Pizza | Curry | Total | |
|---|---|---|---|
| Year 10 | 10 | 18 | 28 |
| Year 11 | 14 | 17 | 31 |
| Total | 25 | 35 | 60 |
Find:
a) \( P(\text{Year 10}) \)
b) \( P(\text{Curry} | \text{Year 10}) \)
d) \( P(\text{Pizza} | \text{Year 11}) \)
解答过程:
a) \( P(\text{Year 10}) \)
\( P(\text{Year 10}) = \frac{28}{60} = \frac{7}{15} \)
b) \( P(\text{Curry} | \text{Year 10}) \)
Year 10学生总数:28人,其中喜欢Curry:18人,故 \( P(\text{Curry} | \text{Year 10}) = \frac{18}{28} = \frac{9}{14} \)
d) \( P(\text{Pizza} | \text{Year 11}) \)
Year 11学生总数:31人,其中喜欢Pizza:14人,故 \( P(\text{Pizza} | \text{Year 11}) = \frac{14}{31} \)
A card is drawn at random from a pack of 52 playing cards. Given that the card is a diamond, find the probability that the card is an Ace.
解答过程:
钻石牌共13张,其中钻石A有1张,故 \( P(\text{Ace} | \text{diamond}) = \frac{1}{13} \)
A veterinary surgery has 750 registered pet owners. Of these, 450 are female. 320 of the pet owners own a cat and 250 own a budgie. Of the remaining pet owners, 25 are males who own another type of pet. No one owns more than one type of pet. 175 female owners have a cat.
\( F \) is the event that an owner is female.
\( B \) is the event that an owner has a budgie.
\( C \) is the event that an owner has a cat.
Find:
a) \( P(B' \cap C') \)
b) \( P(B|F') \)
c) \( P(F'|C) \)
d) \( P((B' \cap C')|F) \)
解答过程:
整理数据:
计算男性养虎皮鹦鹉:
男性总数:300人 = 男性养猫(145) + 男性养虎皮鹦鹉 + 男性其他宠物(25)
男性养虎皮鹦鹉 = 300 - 145 - 25 = 130人
计算女性养虎皮鹦鹉:
女性养虎皮鹦鹉 = 250 - 130 = 120人
计算女性其他宠物:
女性其他宠物 = 450 - 175 - 120 = 155人
a) \( P(B' \cap C') \)
其他宠物总数:男性其他25人 + 女性其他155人 = 180人,故 \( P(B' \cap C') = \frac{180}{750} = \frac{6}{25} \)
b) \( P(B|F') \)
男性养虎皮鹦鹉:130人,男性总数:300人,故 \( P(B|F') = \frac{130}{300} = \frac{13}{30} \)
c) \( P(F'|C) \)
男性养猫:145人,养猫总数:320人,故 \( P(F'|C) = \frac{145}{320} = \frac{29}{64} \)
d) \( P((B' \cap C')|F) \)
女性其他宠物:155人,女性总数:450人,故 \( P((B' \cap C')|F) = \frac{155}{450} = \frac{31}{90} \)
在一家公司,员工总数为200人。其中男性120人,女性80人。已知吸烟的男性有48人,吸烟的女性有24人。不吸烟的男性有72人,不吸烟的女性有56人。
随机选择一名员工,求:
a) 是男性的概率
b) 在男性中吸烟的概率
c) 在吸烟者中是女性的概率
d) 判断吸烟与性别是否独立
解答过程:
a) 是男性的概率
\( P(\text{男性}) = \frac{120}{200} = 0.6 \)
b) 在男性中吸烟的概率
男性总数:120人,吸烟男性:48人,故 \( P(\text{吸烟}|\text{男性}) = \frac{48}{120} = 0.4 \)
c) 在吸烟者中是女性的概率
吸烟者总数:48 + 24 = 72人,吸烟女性:24人,故 \( P(\text{女性}|\text{吸烟}) = \frac{24}{72} = \frac{1}{3} \)
d) 独立性判断
吸烟概率 \( P(\text{吸烟}) = \frac{72}{200} = 0.36 \)
男性吸烟概率 \( P(\text{吸烟}|\text{男性}) = 0.4 \neq 0.36 \),故不独立。
投掷两个六面骰子,已知至少有一个骰子显示6,求两个骰子点数之和为8的概率。
解答过程:
至少一个6的结果(11种):
(1,6), (2,6), (3,6), (4,6), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)
和为8的结果(2种):
(2,6), (6,2)
故 \( P(\text{sum}=8 | \text{at least one 6}) = \frac{2}{11} \)