Binomial Estimation - Exercises
a) \((1-\frac{x}{10})^6 = 1 - \frac{6x}{10} + \frac{15x^2}{100} - \frac{20x^3}{1000} + \ldots\)
\(= 1 - 0.6x + 0.15x^2 - 0.02x^3 + \ldots\)
b) 设 \(x = 0.1\),则 \(\frac{x}{10} = 0.01\)
\((0.99)^6 = (1-0.01)^6 \approx 1 - 0.6(0.1) = 0.94\)
a) \((2+\frac{x}{5})^{10} = 2^{10} + 10 \cdot 2^9 \cdot \frac{x}{5} + 45 \cdot 2^8 \cdot \frac{x^2}{25} + 120 \cdot 2^7 \cdot \frac{x^3}{125} + \ldots\)
\(= 1024 + 1024x + 230.4x^2 + 30.72x^3 + \ldots\)
b) 设 \(x = 0.5\),则 \(\frac{x}{5} = 0.1\)
\((2.1)^{10} = (2+0.1)^{10} \approx 1024 + 1024(0.5) = 1536\)
\((2+x)(1-3x)^5 \approx 2 - 29x + 165x^2\)
\((1-3x)^5 = 1 + 5(-3x) + 10(-3x)^2 + \ldots = 1 - 15x + 90x^2 + \ldots\)
\((2+x)(1-3x)^5 = (2+x)(1-15x+90x^2+\ldots)\)
\(= 2(1-15x+90x^2) + x(1-15x+90x^2)\)
\(= 2 - 30x + 180x^2 + x - 15x^2 + 90x^3\)
\(= 2 - 29x + 165x^2 + 90x^3\)
忽略 \(x^3\) 项:\(\approx 2 - 29x + 165x^2\)
\((2-x)(3+x)^4 \approx a + bx + cx^2\)
\((3+x)^4 = 3^4 + 4 \cdot 3^3 \cdot x + 6 \cdot 3^2 \cdot x^2 + \ldots = 81 + 108x + 54x^2 + \ldots\)
\((2-x)(3+x)^4 = (2-x)(81+108x+54x^2+\ldots)\)
\(= 2(81+108x+54x^2) - x(81+108x+54x^2)\)
\(= 162 + 216x + 108x^2 - 81x - 108x^2 - 54x^3\)
\(= 162 + 135x + 0x^2 - 54x^3\)
忽略 \(x^3\) 项:\(\approx 162 + 135x + 0x^2\)
所以:\(a = 162\),\(b = 135\),\(c = 0\)
a) \((1+2x)^8 = 1 + 8(2x) + 28(2x)^2 + 56(2x)^3 + \ldots\)
\(= 1 + 16x + 112x^2 + 448x^3 + \ldots\)
b) 设 \(x = 0.01\),则 \(2x = 0.02\)
\((1.02)^8 = (1+0.02)^8 \approx 1 + 16(0.01) = 1.16\)
使用更高精度:\(\approx 1 + 16(0.01) + 112(0.01)^2 = 1.16 + 0.0112 = 1.1712\)
a) \((1-5x)^{30} = 1 + 30(-5x) + 435(-5x)^2 + 4060(-5x)^3 + \ldots\)
\(= 1 - 150x + 10875x^2 - 507500x^3 + \ldots\)
b) 设 \(x = 0.001\),则 \(5x = 0.005\)
\((0.995)^{30} = (1-0.005)^{30} \approx 1 - 150(0.001) + 10875(0.001)^2 - 507500(0.001)^3\)
\(= 1 - 0.15 + 0.010875 - 0.0005075 = 0.8603675\)
保留6位小数:\(0.860368\)
c) 计算器值:\((0.995)^{30} \approx 0.860708\)
百分比误差:\(\frac{|0.860708 - 0.860368|}{0.860708} \times 100\% \approx 0.04\%\)
a) \((3-\frac{x}{5})^{10} = 3^{10} + 10 \cdot 3^9 \cdot (-\frac{x}{5}) + 45 \cdot 3^8 \cdot (-\frac{x}{5})^2 + \ldots\)
\(= 59049 - 39366x + 13122x^2 + \ldots\)
b) 设 \(x = 0.1\),则 \(\frac{x}{5} = 0.02\)
\((2.98)^{10} = (3-0.02)^{10} \approx 59049 - 39366(0.1) = 59049 - 3936.6 = 55112.4\)
使用更高精度:\(\approx 59049 - 39366(0.1) + 13122(0.1)^2 = 55112.4 + 131.22 = 55243.62\)