5.1 Arithmetic Sequences

练习题

基础练习

题目1

对于每个数列:

i) 写出数列的前4项

ii) 写出 a 和 d 的值

a) \( u_n = 5n + 2 \)

b) \( u_n = 9 - 2n \)

c) \( u_n = 7 + 0.5n \)

d) \( u_n = n - 10 \)

答案1

a) i) 前4项:7, 12, 17, 22

ii) \( a = 7, d = 5 \)

b) i) 前4项:7, 5, 3, 1

ii) \( a = 7, d = -2 \)

c) i) 前4项:7.5, 8, 8.5, 9

ii) \( a = 7.5, d = 0.5 \)

d) i) 前4项:-9, -8, -7, -6

ii) \( a = -9, d = 1 \)

题目2

求下列等差数列的第 n 项和第10项:

a) 5, 7, 9, 11, ...

b) 5, 8, 11, 14, ...

c) 24, 21, 18, 15, ...

d) -1, 3, 7, 11, ...

e) x, 2x, 3x, 4x, ...

f) a, a + d, a + 2d, a + 3d, ...

答案2

a) \( u_n = 3 + 2n \), \( u_{10} = 23 \)

b) \( u_n = 2 + 3n \), \( u_{10} = 32 \)

c) \( u_n = 27 - 3n \), \( u_{10} = -3 \)

d) \( u_n = -5 + 4n \), \( u_{10} = 35 \)

e) \( u_n = nx \), \( u_{10} = 10x \)

f) \( u_n = a + (n-1)d \), \( u_{10} = a + 9d \)

进阶练习

题目3

计算下列等差数列的项数:

a) 3, 7, 11, ..., 83, 87

b) 5, 8, 11, ..., 119, 122

c) 90, 88, 86, ..., 16, 14

d) 4, 9, 14, ..., 224, 229

e) x, 3x, 5x, ..., 35x

提示

求第 n 项的表达式,然后设它等于数列的最后一项。解方程求出 n 的值。

答案3

a) 22项

b) 40项

c) 39项

d) 46项

e) 18项

题目4

等差数列的首项是14,第4项是32。求公差。

答案4

\( u_4 = a + 3d = 32 \)

\( 14 + 3d = 32 \)

\( 3d = 18 \)

\( d = 6 \)

题目5

数列由公式 \( u_n = pn + q \) 生成,其中 p 和 q 是待求常数。已知 \( u_6 = 9 \) 和 \( u_9 = 11 \),求常数 p 和 q。

答案5

\( u_6 = 6p + q = 9 \) ... (1)

\( u_9 = 9p + q = 11 \) ... (2)

(2) - (1): \( 3p = 2 \)

\( p = \frac{2}{3} \)

代入(1): \( 4 + q = 9 \)

\( q = 5 \)

所以 \( p = \frac{2}{3}, q = 5 \)

挑战练习

题目6

对于等差数列,\( u_3 = 30 \) 且 \( u_9 = 9 \)。求数列中第一个负项。

答案6

\( u_3 = a + 2d = 30 \) ... (1)

\( u_9 = a + 8d = 9 \) ... (2)

(2) - (1): \( 6d = -21 \)

\( d = -3.5 \)

代入(1): \( a - 7 = 30 \)

\( a = 37 \)

通项公式:\( u_n = 37 - 3.5(n-1) \)

设 \( u_n < 0 \):\( 37 - 3.5(n-1) < 0 \)

\( 37 < 3.5(n-1) \)

\( n-1 > \frac{37}{3.5} = \frac{74}{7} \)

\( n > \frac{81}{7} \approx 11.57 \)

所以 \( n = 12 \),第12项是第一个负项

题目7

等差数列的第20项是14,第40项是-6。求第10项的值。

答案7

\( u_{20} = a + 19d = 14 \) ... (1)

\( u_{40} = a + 39d = -6 \) ... (2)

(2) - (1): \( 20d = -20 \)

\( d = -1 \)

代入(1): \( a - 19 = 14 \)

\( a = 33 \)

\( u_{10} = 33 + 9(-1) = 24 \)

题目8

等差数列的前三项是 5p, 20, 3p,其中 p 是常数。求数列的第20项。

答案8

\( a = 5p, u_2 = 20, u_3 = 3p \)

\( d = u_2 - u_1 = 20 - 5p \)

\( d = u_3 - u_2 = 3p - 20 \)

所以:\( 20 - 5p = 3p - 20 \)

\( 40 = 8p \)

\( p = 5 \)

\( a = 25, d = -5 \)

\( u_{20} = 25 + 19(-5) = 25 - 95 = -70 \)

综合练习

题目9

等差数列的前三项是 -8, k², 17k, ...

求 k 的两个可能值。

答案9

\( a = -8, u_2 = k^2, u_3 = 17k \)

\( d = k^2 - (-8) = k^2 + 8 \)

\( d = 17k - k^2 \)

所以:\( k^2 + 8 = 17k - k^2 \)

\( 2k^2 - 17k + 8 = 0 \)

\( (2k - 1)(k - 8) = 0 \)

\( k = \frac{1}{2} \) 或 \( k = 8 \)

题目10

等差数列的首项是 k²,公差是 k,其中 k > 0。数列的第5项是41。求 k 的值,答案用 \( p + q\sqrt{5} \) 的形式给出,其中 p 和 q 是整数。

答案10

\( a = k^2, d = k \)

\( u_5 = k^2 + 4k = 41 \)

\( k^2 + 4k - 41 = 0 \)

使用二次公式:

\( k = \frac{-4 \pm \sqrt{16 + 164}}{2} \)

\( k = \frac{-4 \pm \sqrt{180}}{2} \)

\( k = \frac{-4 \pm 6\sqrt{5}}{2} \)

\( k = -2 \pm 3\sqrt{5} \)

因为 k > 0,所以 \( k = -2 + 3\sqrt{5} \)

解题技巧总结

解题步骤

  • 仔细阅读题目,确定已知条件和要求
  • 正确识别首项 a 和公差 d
  • 根据题目要求选择合适的公式或方法
  • 建立方程组时,确保方程个数等于未知数个数
  • 解方程时注意检验答案的合理性
  • 对于涉及不等式的题目,注意 n 必须是正整数

常见错误

  • 混淆首项和第一项的概念
  • 计算公差时符号错误
  • 代入通项公式时忘记减1
  • 解不等式时忘记考虑整数条件
  • 建立方程组时方程不够或多余