4.1 Pascal's Triangle - 练习题

Pascal's Triangle - Exercises

基础练习 / Basic Exercises

练习1 / Exercise 1

说出帕斯卡三角形中给出以下展开式系数的行:
State the row of Pascal's triangle that would give the coefficients of each expansion:

a) \((x+y)^3\) b) \((3x-7)^{15}\) c) \((2x+\frac{1}{2})^n\) d) \((y-2x)^{n+4}\)

答案 / Answer

a) 第4行 (1, 3, 3, 1)

b) 第16行

c) 第(n+1)行

d) 第(n+5)行

练习2 / Exercise 2

写出以下展开式:
Write down the expansion of:

a) \((x+y)^4\) b) \((p+q)^5\) c) \((a-b)^3\) d) \((x+4)^3\)

e) \((2x-3)^4\) f) \((a+2)^5\) g) \((3x-4)^4\) h) \((2x-3y)^4\)

答案 / Answer

a) \(x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4\)

b) \(p^5 + 5p^4q + 10p^3q^2 + 10p^2q^3 + 5pq^4 + q^5\)

c) \(a^3 - 3a^2b + 3ab^2 - b^3\)

d) \(x^3 + 12x^2 + 48x + 64\)

e) \(16x^4 - 96x^3 + 216x^2 - 216x + 81\)

f) \(a^5 + 10a^4 + 40a^3 + 80a^2 + 80a + 32\)

g) \(81x^4 - 432x^3 + 864x^2 - 768x + 256\)

h) \(16x^4 - 96x^3y + 216x^2y^2 - 216xy^3 + 81y^4\)

进阶练习 / Advanced Exercises

练习3 / Exercise 3

求以下展开式中 \(x^3\) 的系数:
Find the coefficient of \(x^3\) in the expansion of:

a) \((4+x)^4\) b) \((1-x)^5\) c) \((3+2x)^3\) d) \((4+2x)^5\)

e) \((2+x)^6\) f) \((4-\frac{1}{2}x)^4\) g) \((x+2)^5\) h) \((3-2x)^4\)

答案 / Answer

a) 4

b) -10

c) 8

d) 160

e) 20

f) -1

g) 80

h) -32

练习4 / Exercise 4

完全展开表达式 \((1+3x)(1+2x)^3\)。
Fully expand the expression \((1+3x)(1+2x)^3\).

答案 / Answer

\((1+3x)(1+2x)^3 = (1+3x)(1+6x+12x^2+8x^3)\)

\(= 1+6x+12x^2+8x^3+3x+18x^2+36x^3+24x^4\)

\(= 1+9x+30x^2+44x^3+24x^4\)

练习5 / Exercise 5

展开 \((2+y)^3\)。因此或以其他方式,写出 \((2+x-x^2)^3\) 按 \(x\) 的升幂展开式。
Expand \((2+y)^3\). Hence or otherwise, write down the expansion of \((2+x-x^2)^3\) in ascending powers of \(x\).

答案 / Answer

\((2+y)^3 = 8 + 12y + 6y^2 + y^3\)

\((2+x-x^2)^3 = 8 + 12(x-x^2) + 6(x-x^2)^2 + (x-x^2)^3\)

\(= 8 + 12x - 12x^2 + 6x^2 - 12x^3 + 6x^4 + x^3 - 3x^4 + 3x^5 - x^6\)

\(= 8 + 12x - 6x^2 - 11x^3 + 3x^4 + 3x^5 - x^6\)

挑战练习 / Challenge Exercises

练习6 / Exercise 6

\((2+ax)^3\) 展开式中 \(x^2\) 的系数是 54。求常数 \(a\) 的可能值。
The coefficient of \(x^2\) in the expansion of \((2+ax)^3\) is 54. Find the possible values of the constant \(a\).

答案 / Answer

\((2+ax)^3 = 8 + 12ax + 6a^2x^2 + a^3x^3\)

\(x^2\) 的系数是 \(6a^2 = 54\)

\(a^2 = 9\)

\(a = \pm 3\)

练习7 / Exercise 7

\((2-x)(3+bx)^3\) 展开式中 \(x^2\) 的系数是 45。求常数 \(b\) 的可能值。
The coefficient of \(x^2\) in the expansion of \((2-x)(3+bx)^3\) is 45. Find possible values of the constant \(b\).

答案 / Answer

\((3+bx)^3 = 27 + 27bx + 9b^2x^2 + b^3x^3\)

\((2-x)(27 + 27bx + 9b^2x^2 + b^3x^3)\)

\(x^2\) 项:\(2 \times 9b^2x^2 + (-x) \times 27bx = 18b^2x^2 - 27bx^2\)

系数:\(18b^2 - 27b = 45\)

\(18b^2 - 27b - 45 = 0\)

\(6b^2 - 9b - 15 = 0\)

\(2b^2 - 3b - 5 = 0\)

\((2b-5)(b+1) = 0\)

\(b = \frac{5}{2}\) 或 \(b = -1\)

练习8 / Exercise 8

计算 \((p-2x)^3\) 展开式中 \(x^2\) 的系数。用 \(p\) 表示你的答案。
Work out the coefficient of \(x^2\) in the expansion of \((p-2x)^3\). Give your answer in terms of \(p\).

答案 / Answer

\((p-2x)^3 = p^3 - 6p^2x + 12px^2 - 8x^3\)

\(x^2\) 的系数是 \(12p\)