Chapter Review 4 - 教材内容

Chapter Review 4 - Textbook Content

章节复习概述 / Chapter Review Overview

第4章"二项式展开"涵盖了从基础概念到高级应用的完整知识体系。
Chapter 4 "The Binomial Expansion" covers a complete knowledge system from basic concepts to advanced applications.
通过本章的学习,我们掌握了二项式展开的理论基础、计算方法和实际应用。
Through this chapter, we have mastered the theoretical foundation, calculation methods, and practical applications of binomial expansion.

学习成果 / Learning Outcomes

4.1 帕斯卡三角形复习 / Pascal's Triangle Review

帕斯卡三角形是二项式展开的基础,它提供了展开式中各项系数的直观表示。
Pascal's triangle is the foundation of binomial expansion, providing an intuitive representation of the coefficients in the expansion.

核心规律 / Core Rules

• 第 \((n+1)\) 行给出 \((a+b)^n\) 展开式中的系数

• 每个数字等于其上方两个数字的和

• 三角形是对称的

• 每行数字的和等于 \(2^n\)

应用示例 / Application Example

使用帕斯卡三角形展开 \((x+2y)^3\):
Use Pascal's triangle to expand \((x+2y)^3\):

第4行系数:1, 3, 3, 1

\((x+2y)^3 = 1 \cdot x^3 + 3 \cdot x^2(2y) + 3 \cdot x(2y)^2 + 1 \cdot (2y)^3\)

\(= x^3 + 6x^2y + 12xy^2 + 8y^3\)

4.2 阶乘记号复习 / Factorial Notation Review

阶乘记号是计算组合数的重要工具,它简化了二项式系数的计算。
Factorial notation is an important tool for calculating combinations, simplifying the calculation of binomial coefficients.

基本定义 / Basic Definitions

\(n! = n \times (n-1) \times (n-2) \times \ldots \times 3 \times 2 \times 1\)

\(\binom{n}{r} = \frac{n!}{r!(n-r)!}\)

特别地,\(0! = 1\)

重要性质 / Important Properties

计算示例 / Calculation Example

计算 \(\binom{10}{3}\):
Calculate \(\binom{10}{3}\):

\(\binom{10}{3} = \frac{10!}{3!7!} = \frac{10 \times 9 \times 8}{3 \times 2 \times 1} = \frac{720}{6} = 120\)

4.3 二项式展开复习 / The Binomial Expansion Review

二项式定理是本章的核心,它提供了展开 \((a+b)^n\) 的完整公式。
The binomial theorem is the core of this chapter, providing the complete formula for expanding \((a+b)^n\).

二项式定理 / Binomial Theorem

\((a+b)^n = \sum_{r=0}^{n} \binom{n}{r}a^{n-r}b^r\)

\(= a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \ldots + \binom{n}{r}a^{n-r}b^r + \ldots + b^n\)

展开特点 / Expansion Features

一般项公式 / General Term Formula

\((a+b)^n\) 展开式中第 \(r+1\) 项为:

\(T_{r+1} = \binom{n}{r}a^{n-r}b^r\)

展开示例 / Expansion Example

展开 \((2x-3)^4\):
Expand \((2x-3)^4\):

\((2x-3)^4 = (2x)^4 + \binom{4}{1}(2x)^3(-3) + \binom{4}{2}(2x)^2(-3)^2 + \binom{4}{3}(2x)(-3)^3 + (-3)^4\)

\(= 16x^4 - 96x^3 + 216x^2 - 216x + 81\)

4.4 解决二项式问题复习 / Solving Binomial Problems Review

解决二项式问题需要灵活运用一般项公式,能够计算特定项的系数或求解未知数。
Solving binomial problems requires flexible use of the general term formula, being able to calculate coefficients of specific terms or solve for unknowns.

解题步骤 / Problem-Solving Steps

系数计算示例 / Coefficient Calculation Example

求 \((1+2x)^8\) 展开式中 \(x^3\) 的系数:
Find the coefficient of \(x^3\) in the expansion of \((1+2x)^8\):

\(x^3\) 项对应 \(r = 3\)

系数 = \(\binom{8}{3} \cdot 1^{8-3} \cdot (2x)^3 = 56 \times 1 \times 8x^3 = 448x^3\)

所以 \(x^3\) 的系数是 448

未知数求解示例 / Unknown Variable Solving Example

\((2+ax)^5\) 展开式中 \(x^2\) 的系数是 40,求 \(a\) 的值:
The coefficient of \(x^2\) in the expansion of \((2+ax)^5\) is 40, find the value of \(a\):

\(x^2\) 项对应 \(r = 2\)

系数 = \(\binom{5}{2} \cdot 2^{5-2} \cdot (ax)^2 = 10 \times 8 \times a^2x^2 = 80a^2x^2\)

所以 \(80a^2 = 40\),即 \(a^2 = \frac{1}{2}\),所以 \(a = \pm\frac{1}{\sqrt{2}}\)

4.5 二项式估计复习 / Binomial Estimation Review

二项式估计是利用二项式展开的前几项来近似计算复杂函数值的方法。
Binomial estimation is a method of approximating complex function values using the first few terms of binomial expansion.

近似条件 / Approximation Condition

当 \(x\) 很小时,可以忽略 \(x^3\) 及更高次项

\((1+x)^n \approx 1 + nx + \frac{n(n-1)}{2}x^2\)

应用场景 / Application Scenarios

估计示例 / Estimation Example

估计 \((0.99)^6\) 的值:
Estimate the value of \((0.99)^6\):

\((0.99)^6 = (1-0.01)^6 \approx 1 + 6(-0.01) + \frac{6 \times 5}{2}(-0.01)^2\)

\(= 1 - 0.06 + 0.0015 = 0.9415\)

误差分析 / Error Analysis

百分比误差 = \(\frac{|实际值 - 近似值|}{实际值} \times 100\%\)

综合应用 / Comprehensive Applications

二项式展开在数学的各个领域都有重要应用,包括概率论、统计学、工程学等。
Binomial expansion has important applications in various fields of mathematics, including probability theory, statistics, engineering, etc.

应用领域 / Application Fields

概率应用示例 / Probability Application Example

20个人玩游戏,每个人获胜的概率是 \(p\),恰好有 \(n\) 个人获胜的概率是:
20 people play a game, each person has probability \(p\) of winning, the probability that exactly \(n\) people win is:

\(P(n) = \binom{20}{n}p^n(1-p)^{20-n}\)

这是二项分布的概率质量函数。
This is the probability mass function of the binomial distribution.

学习建议 / Learning Recommendations

复习策略 / Review Strategies

常见错误 / Common Mistakes

重要公式汇总 / Important Formula Summary

• 帕斯卡三角形:第 \((n+1)\) 行 = \((a+b)^n\) 的系数

• 阶乘:\(n! = n \times (n-1) \times \ldots \times 1\)

• 组合:\(\binom{n}{r} = \frac{n!}{r!(n-r)!}\)

• 二项式定理:\((a+b)^n = \sum_{r=0}^{n} \binom{n}{r}a^{n-r}b^r\)

• 一般项:\(T_{r+1} = \binom{n}{r}a^{n-r}b^r\)

• 近似:\((1+x)^n \approx 1 + nx\)(当 \(x\) 很小时)