5.2 Arithmetic Series

练习题

基础练习

题目1

求下列等差数列的前n项和:

a) \(3 + 7 + 11 + 15 + ...\) (20项)

b) \(2 + 6 + 10 + 14 + ...\) (15项)

c) \(30 + 27 + 24 + 21 + ...\) (40项)

d) \(5 + 1 + (-3) + (-7) + ...\) (14项)

解答

a) 首项 \(a = 3\),公差 \(d = 4\),项数 \(n = 20\)

\(S_{20} = \frac{20}{2}\left(2 \times 3 + (20-1) \times 4\right)\)

\(S_{20} = 10 \times (6 + 76) = 10 \times 82 = 820\)

b) 首项 \(a = 2\),公差 \(d = 4\),项数 \(n = 15\)

\(S_{15} = \frac{15}{2}\left(2 \times 2 + (15-1) \times 4\right)\)

\(S_{15} = \frac{15}{2} \times (4 + 56) = \frac{15}{2} \times 60 = 450\)

c) 首项 \(a = 30\),公差 \(d = -3\),项数 \(n = 40\)

\(S_{40} = \frac{40}{2}\left(2 \times 30 + (40-1) \times (-3)\right)\)

\(S_{40} = 20 \times (60 - 117) = 20 \times (-57) = -1140\)

d) 首项 \(a = 5\),公差 \(d = -4\),项数 \(n = 14\)

\(S_{14} = \frac{14}{2}\left(2 \times 5 + (14-1) \times (-4)\right)\)

\(S_{14} = 7 \times (10 - 52) = 7 \times (-42) = -294\)

题目2

求下列等差数列的和:

a) \(5 + 7 + 9 + ... + 75\)

b) \(4 + 7 + 10 + ... + 91\)

c) \(34 + 29 + 24 + 19 + ... + (-111)\)

解答

a) 首项 \(a = 5\),公差 \(d = 2\),末项 \(l = 75\)

先求项数:\(75 = 5 + (n-1) \times 2\),得 \(n = 36\)

\(S_{36} = \frac{36}{2}(5 + 75) = 18 \times 80 = 1440\)

b) 首项 \(a = 4\),公差 \(d = 3\),末项 \(l = 91\)

先求项数:\(91 = 4 + (n-1) \times 3\),得 \(n = 30\)

\(S_{30} = \frac{30}{2}(4 + 91) = 15 \times 95 = 1425\)

c) 首项 \(a = 34\),公差 \(d = -5\),末项 \(l = -111\)

先求项数:\(-111 = 34 + (n-1) \times (-5)\),得 \(n = 30\)

\(S_{30} = \frac{30}{2}(34 + (-111)) = 15 \times (-77) = -1155\)

进阶练习

题目3

求使下列等差数列的和达到指定值的最少项数:

a) \(5 + 8 + 11 + 14 + ... = 670\)

b) \(3 + 8 + 13 + 18 + ... = 1575\)

c) \(64 + 62 + 60 + ... = 0\)

解答

a) 首项 \(a = 5\),公差 \(d = 3\)

\(\frac{n}{2}\left(2 \times 5 + (n-1) \times 3\right) = 670\)

\(\frac{n}{2}(10 + 3n - 3) = 670\)

\(\frac{n}{2}(3n + 7) = 670\)

\(n(3n + 7) = 1340\)

\(3n^2 + 7n - 1340 = 0\)

解得 \(n = 20\)(舍去负值)

b) 首项 \(a = 3\),公差 \(d = 5\)

\(\frac{n}{2}\left(2 \times 3 + (n-1) \times 5\right) = 1575\)

\(\frac{n}{2}(6 + 5n - 5) = 1575\)

\(\frac{n}{2}(5n + 1) = 1575\)

\(n(5n + 1) = 3150\)

\(5n^2 + n - 3150 = 0\)

解得 \(n = 25\)(舍去负值)

c) 首项 \(a = 64\),公差 \(d = -2\)

\(\frac{n}{2}\left(2 \times 64 + (n-1) \times (-2)\right) = 0\)

\(\frac{n}{2}(128 - 2n + 2) = 0\)

\(\frac{n}{2}(130 - 2n) = 0\)

\(n(130 - 2n) = 0\)

解得 \(n = 0\) 或 \(n = 65\),所以需要65项

题目4

求前50个偶数的和。

解答

前50个偶数是:2, 4, 6, 8, ..., 100

首项 \(a = 2\),公差 \(d = 2\),项数 \(n = 50\)

\(S_{50} = \frac{50}{2}\left(2 \times 2 + (50-1) \times 2\right)\)

\(S_{50} = 25 \times (4 + 98) = 25 \times 102 = 2550\)

题目5

求使等差数列 \(7 + 12 + 17 + 22 + 27 + ...\) 的和超过1000的最少项数。

解答

首项 \(a = 7\),公差 \(d = 5\)

\(\frac{n}{2}\left(2 \times 7 + (n-1) \times 5\right) > 1000\)

\(\frac{n}{2}(14 + 5n - 5) > 1000\)

\(\frac{n}{2}(5n + 9) > 1000\)

\(n(5n + 9) > 2000\)

\(5n^2 + 9n - 2000 > 0\)

解得 \(n > 19.8\),所以需要20项

综合应用

题目6

等差数列的首项是4,前20项的和是-15。求公差和第20项。

解答

已知:首项 \(a = 4\),项数 \(n = 20\),和 \(S_{20} = -15\)

\(S_{20} = \frac{20}{2}\left(2 \times 4 + (20-1) \times d\right) = -15\)

\(10(8 + 19d) = -15\)

\(8 + 19d = -1.5\)

\(19d = -9.5\)

\(d = -0.5\)

第20项:\(u_{20} = 4 + (20-1) \times (-0.5) = 4 - 9.5 = -5.5\)

题目7

等差数列前3项的和是12,第20项是-32。求首项和公差。

解答

设首项为 \(a\),公差为 \(d\)

前3项和:\(S_3 = \frac{3}{2}\left(2a + (3-1)d\right) = 12\)

\(\frac{3}{2}(2a + 2d) = 12\)

\(3(a + d) = 12\)

\(a + d = 4\) (1)

第20项:\(u_{20} = a + (20-1)d = a + 19d = -32\) (2)

由(1)得:\(a = 4 - d\)

代入(2):\(4 - d + 19d = -32\)

\(4 + 18d = -32\)

\(18d = -36\)

\(d = -2\)

\(a = 4 - (-2) = 6\)

题目8

证明前50个自然数的和是1275。

解答

前50个自然数:1, 2, 3, ..., 50

首项 \(a = 1\),公差 \(d = 1\),项数 \(n = 50\)

\(S_{50} = \frac{50}{2}\left(2 \times 1 + (50-1) \times 1\right)\)

\(S_{50} = 25 \times (2 + 49)\)

\(S_{50} = 25 \times 51 = 1275\)

因此,前50个自然数的和是1275。

学习要点

解题技巧

  • 仔细识别等差数列的首项、公差和项数
  • 根据题目条件选择合适的求和公式
  • 当需要求项数时,建立方程或不等式
  • 注意公差的符号,特别是递减数列
  • 验证计算结果的合理性

注意事项

在解决等差数列求和问题时,要特别注意:

1. 正确理解题目中的"前n项"、"第n项"等概念

2. 当公差为负数时,数列是递减的,但公式仍然适用

3. 在求项数时,要确保结果是正整数

4. 综合题往往需要建立方程组求解