三角函数比的精确值 - 知识点总结
| 角度 | 弧度 | sin θ | cos θ | tan θ |
|---|---|---|---|---|
| 30° | π/6 | \(\frac{1}{2}\) | \(\frac{\sqrt{3}}{2}\) | \(\frac{\sqrt{3}}{3}\) |
| 45° | π/4 | \(\frac{\sqrt{2}}{2}\) | \(\frac{\sqrt{2}}{2}\) | 1 |
| 60° | π/3 | \(\frac{\sqrt{3}}{2}\) | \(\frac{1}{2}\) | \(\sqrt{3}\) |
规律:角度越大,正弦值越大
规律:角度越大,余弦值越小
规律:角度越大,正切值越大
\(\sin 30° = \sin \frac{\pi}{6} = \frac{1}{2}\)
\(\cos 30° = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}\)
\(\tan 30° = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}\)
\(\sin 45° = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}\)
\(\cos 45° = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}\)
\(\tan 45° = \tan \frac{\pi}{4} = 1\)
\(\sin 60° = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}\)
\(\cos 60° = \cos \frac{\pi}{3} = \frac{1}{2}\)
\(\tan 60° = \tan \frac{\pi}{3} = \sqrt{3}\)