8.4 Areas Between Curves and Lines

练习题

Exercise 8D - 曲线与直线间面积

1. 基础曲线与水平线

The diagram shows part of the curve with equation \(y = x^2 + 2\) and the line with equation \(y = 6\).

The line cuts the curve at the points A and B.

a) Find the coordinates of the points A and B.

b) Find the area of the finite region bounded by line AB and the curve.

提示:先求交点,然后计算矩形面积减去曲线下面积。
答案:
a) A(-2, 6), B(2, 6)
b) Area = 16 - \(\frac{32}{3}\) = \(\frac{16}{3}\)
Problem 1

2. 曲线与水平线(复合图形)

The diagram shows the finite region, R, bounded by the curve with equation \(y = 4x - x^2\) and the line \(y = 3\).

The line cuts the curve at the points A and B.

a) Find the coordinates of the points A and B.

b) Find the area of R.

提示:先求交点,注意曲线开口向下,需要计算矩形面积减去曲线下面积。
答案:
a) A(1, 3), B(3, 3)
b) Area = 6 - \(\frac{4}{3}\) = \(\frac{14}{3}\)
Problem 2

3. 复杂曲线与斜线

The diagram shows a sketch of part of the curve with equation \(y = 9 - 3x - 5x^2 - x^3\) and the line with equation \(y = 4 - 4x\).

The line cuts the curve at the points A and B.

a) Find the coordinates of the points A and B.

b) Find the area of the finite region bounded by the curve and the line.

提示:先求交点,然后计算三角形面积减去曲线下面积。
答案:
a) A(-1, 8), B(1, 0)
b) Area = 4 - \(\frac{8}{3}\) = \(\frac{4}{3}\)
Problem 3

解题技巧总结

关键步骤:

  1. 找交点:联立方程求解
  2. 画图:确定区域形状
  3. 选择方法:几何面积减去积分 或 积分减去几何面积
  4. 计算:注意符号和积分限
  5. 检查:答案必须为正数