6.2 Finding the Cumulative Distribution Function for a Discrete Random Variable

离散随机变量的累积分布函数

练习说明 / Exercise Instructions

本节练习题旨在帮助您掌握离散随机变量累积分布函数的构造方法和应用。建议先尝试自行解答,然后点击"显示答案"按钮查看参考答案。每个练习题都有详细的解答步骤。

These exercises are designed to help you master the construction methods and applications of cumulative distribution functions for discrete random variables. It is recommended to try solving them yourself first, then click the "Show Answer" button to view the reference answers. Each exercise includes detailed solution steps.

练习要点 / Exercise Key Points:

  • 熟练掌握从概率质量函数构造累积分布函数的方法
  • 理解累积分布函数的基本性质
  • 学会运用累积分布函数计算各种概率
  • 熟悉常见离散分布的累积分布函数形式

基础练习 / Basic Exercises

练习 6.2.1

一个离散随机变量 \(X\) 的概率分布如下表所示:

x 1 2 3 4 5 6
p(x) 0.1 0.1 0.15 0.25 0.3 0.1

a) 绘制一张表格显示累积分布函数 \(F(x)\)。
b) 写出 \(F(5)\) 的值。
c) 写出 \(F(2.2)\) 的值。

解答:

a) 累积分布函数表格:

x 1 2 3 4 5 6
F(x) 0.1 0.2 0.35 0.6 0.9 1.0

b) \(F(5) = 0.9\)

c) \(F(2.2) = F(2) = 0.2\)

练习 6.2.2

一个离散随机变量的累积分布函数 \(F(x)\) 如下表所示:

x 0 1 2 3 4 5 6
F(x) 0 0.1 0.2 0.45 0.5 0.9 1

a) 绘制概率分布表。
b) 写出 \(P(X < 5)\) 的值。
c) 求 \(P(2 \leq X < 5)\) 的值。

解答:

a) 概率分布表:

x 1 2 3 4 5 6
P(X=x) 0.1 0.1 0.25 0.05 0.4 0.1

b) \(P(X < 5) = F(4) = 0.5\)

c) \(P(2 \leq X < 5) = F(4) - F(1) = 0.5 - 0.1 = 0.4\)

练习 6.2.3

随机变量 \(X\) 的概率函数为:

\[P(X = x) = \begin{cases} kx & x = 1,3,5 \\ k(x-1) & x = 2,4,6 \end{cases}\]

其中 \(k\) 是常数。
a) 求 \(k\) 的值。
b) 绘制概率分布表。
c) 求 \(P(2 \leq X < 5)\)。
d) 求 \(F(4)\)。
e) 求 \(F(1.6)\)。

解答:

a) 概率和必须为1:
\(k(1+3+5) + k(1+3+5) = 1\)
\(k(9 + 9) = 1\)
\(18k = 1\)
\(k = \frac{1}{18}\)

b) 概率分布表:
\(P(X=1) = \frac{1}{18}\), \(P(X=2) = \frac{1}{18}\), \(P(X=3) = \frac{3}{18} = \frac{1}{6}\)
\(P(X=4) = \frac{3}{18} = \frac{1}{6}\), \(P(X=5) = \frac{5}{18}\), \(P(X=6) = \frac{5}{18}\)

c) \(P(2 \leq X < 5) = P(X=2) + P(X=3) + P(X=4) = \frac{1}{18} + \frac{1}{6} + \frac{1}{6} = \frac{1}{18} + \frac{3}{18} + \frac{3}{18} = \frac{7}{18}\)

d) \(F(4) = P(X \leq 4) = P(X=1) + P(X=2) + P(X=3) + P(X=4) = \frac{1}{18} + \frac{1}{18} + \frac{3}{18} + \frac{3}{18} = \frac{8}{18} = \frac{4}{9}\)

e) \(F(1.6) = F(1) = \frac{1}{18}\)(因为X在1和2之间没有取值)

练习 6.2.4

随机变量 \(X\) 的概率函数为:

\[P(X = x) = \begin{cases} 0.1 & x = -2, -1 \\ \alpha & x = 0,1 \\ 0.3 & x = 2 \end{cases}\]

a) 求 \(\alpha\) 的值。
b) 绘制概率分布表。
c) 写出 \(F(0.3)\) 的值。

解答:

a) 概率和为1:
\(0.1 + 0.1 + \alpha + \alpha + 0.3 = 1\)
\(0.5 + 2\alpha = 1\)
\(2\alpha = 0.5\)
\(\alpha = 0.25\)

b) 概率分布表:
\(P(X=-2) = 0.1\), \(P(X=-1) = 0.1\), \(P(X=0) = 0.25\), \(P(X=1) = 0.25\), \(P(X=2) = 0.3\)

c) \(F(0.3) = P(X \leq 0.3) = P(X=-2) + P(X=-1) + P(X=0) = 0.1 + 0.1 + 0.25 = 0.45\)

练习 6.2.5

随机变量 \(X\) 的概率函数 \(P(x)\) 定义为:

\[P(X = x) = \begin{cases} 0 & x = 0 \\ \frac{1 + x}{6} & x = 1,2,3,4,5 \\ 1 & x > 5 \end{cases}\]

a) 求 \(P(X \leq 4)\)。
b) 证明 \(P(X = 4) = \frac{1}{6}\)。
c) 求概率分布。

解答:

a) \(P(X \leq 4) = P(X=1) + P(X=2) + P(X=3) + P(X=4) = \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} = \frac{14}{6} = \frac{7}{3}\)

b) \(P(X=4) = \frac{1+4}{6} = \frac{5}{6}\),但题目说证明等于1/6,这可能是个错误。实际上应该是5/6。

c) 概率分布:
\(P(X=1) = \frac{2}{6} = \frac{1}{3}\), \(P(X=2) = \frac{3}{6} = \frac{1}{2}\), \(P(X=3) = \frac{4}{6} = \frac{2}{3}\), \(P(X=4) = \frac{5}{6}\), \(P(X=5) = \frac{6}{6} = 1\)

练习 6.2.6

随机变量 \(X\) 的累积分布函数 \(F(x)\) 定义为:

\[F(x) = \begin{cases} 0 & x = 0 \\ \frac{(x + k)^2}{16} & x = 1,2,3 \\ 1 & x > 3 \end{cases}\]

a) 求 \(k\) 的值。
b) 求概率分布。

解答:

a) \(F(3) = 1 = \frac{(3 + k)^2}{16}\)
\((3 + k)^2 = 16\)
\(3 + k = 4\) 或 \(3 + k = -4\)
k = 1 或 k = -7
由于概率必须为正,取k=1

b) \(P(X=1) = F(1) - F(0) = \frac{(1+1)^2}{16} - 0 = \frac{4}{16} = \frac{1}{4}\)
\(P(X=2) = F(2) - F(1) = \frac{(2+1)^2}{16} - \frac{4}{16} = \frac{9}{16} - \frac{4}{16} = \frac{5}{16}\)
\(P(X=3) = F(3) - F(2) = 1 - \frac{9}{16} = \frac{7}{16}\)

练习总结 / Exercise Summary

通过练习您应该掌握:

  • 从概率质量函数构造累积分布函数的方法和步骤
  • 累积分布函数的基本性质及其验证方法
  • 运用累积分布函数计算各种概率表达式的技巧
  • 常见离散分布累积分布函数的形式和特点
  • 累积分布函数与概率质量函数之间的相互转换

熟练掌握这些内容将为您后续学习连续随机变量的累积分布函数打下坚实的基础。如果在练习过程中遇到困难,建议回顾教材内容中的概念解释和实例演示。

Mastering these concepts will lay a solid foundation for your subsequent study of cumulative distribution functions for continuous random variables. If you encounter difficulties during practice, it is recommended to review the concept explanations and example demonstrations in the textbook content.