练习题
求下列等比数列的前n项和(保留3位小数):
a) \(1 + 2 + 4 + 8 + ...\) (8项)
b) \(32 + 16 + 8 + ...\) (10项)
c) \(\frac{2}{3} + \frac{4}{15} + \frac{8}{75} + ... + \frac{256}{234375}\)
d) \(4 - 12 + 36 - 108 + ...\) (6项)
a) 首项 \(a = 1\),公比 \(r = 2\),项数 \(n = 8\)
因为 \(r > 1\),使用公式:\(S_n = \frac{a(r^n - 1)}{r - 1}\)
\(S_8 = \frac{1(2^8 - 1)}{2 - 1} = \frac{256 - 1}{1} = 255\)
b) 首项 \(a = 32\),公比 \(r = \frac{1}{2}\),项数 \(n = 10\)
因为 \(|r| < 1\),使用公式:\(S_n = \frac{a(1 - r^n)}{1 - r}\)
\(S_{10} = \frac{32(1 - (\frac{1}{2})^{10})}{1 - \frac{1}{2}} = \frac{32(1 - \frac{1}{1024})}{\frac{1}{2}} = 64 \times \frac{1023}{1024} = 63.937\)
c) 首项 \(a = \frac{2}{3}\),公比 \(r = \frac{2}{5}\)
先求项数:\(\frac{256}{234375} = \frac{2}{3}(\frac{2}{5})^{n-1}\)
\((\frac{2}{5})^{n-1} = \frac{256}{234375} \times \frac{3}{2} = \frac{384}{234375} = \frac{128}{78125}\)
\((\frac{2}{5})^{n-1} = (\frac{2}{5})^7\),所以 \(n = 8\)
\(S_8 = \frac{\frac{2}{3}(1 - (\frac{2}{5})^8)}{1 - \frac{2}{5}} = \frac{\frac{2}{3}(1 - \frac{256}{390625})}{\frac{3}{5}} = \frac{10}{9} \times \frac{390369}{390625} = 1.111\)
d) 首项 \(a = 4\),公比 \(r = -3\),项数 \(n = 6\)
因为 \(|r| > 1\),使用公式:\(S_n = \frac{a(r^n - 1)}{r - 1}\)
\(S_6 = \frac{4((-3)^6 - 1)}{-3 - 1} = \frac{4(729 - 1)}{-4} = \frac{4 \times 728}{-4} = -728\)
求下列等比数列的和:
a) \(729 - 243 + 81 - ... - \frac{1}{3}\)
b) \(-\frac{5}{2} + \frac{5}{4} - \frac{5}{8} + ... - \frac{5}{32768}\)
a) 首项 \(a = 729\),公比 \(r = -\frac{1}{3}\)
先求项数:\(-\frac{1}{3} = 729(-\frac{1}{3})^{n-1}\)
\((-\frac{1}{3})^{n-1} = -\frac{1}{3} \times \frac{1}{729} = -\frac{1}{2187}\)
\((-\frac{1}{3})^{n-1} = (-\frac{1}{3})^7\),所以 \(n = 8\)
因为 \(|r| < 1\),使用公式:\(S_n = \frac{a(1 - r^n)}{1 - r}\)
\(S_8 = \frac{729(1 - (-\frac{1}{3})^8)}{1 - (-\frac{1}{3})} = \frac{729(1 - \frac{1}{6561})}{\frac{4}{3}} = \frac{729 \times \frac{6560}{6561}}{\frac{4}{3}} = 546.750\)
b) 首项 \(a = -\frac{5}{2}\),公比 \(r = -\frac{1}{2}\)
先求项数:\(-\frac{5}{32768} = -\frac{5}{2}(-\frac{1}{2})^{n-1}\)
\((-\frac{1}{2})^{n-1} = \frac{1}{16384} = (\frac{1}{2})^{14}\)
因为 \((-\frac{1}{2})^{n-1} = (-\frac{1}{2})^{14}\),所以 \(n = 15\)
\(S_{15} = \frac{-\frac{5}{2}(1 - (-\frac{1}{2})^{15})}{1 - (-\frac{1}{2})} = \frac{-\frac{5}{2}(1 + \frac{1}{32768})}{\frac{3}{2}} = -\frac{5}{3} \times \frac{32769}{32768} = -1.667\)
等比数列的前三项是 \(3 + 1.2 + 0.48 + ...\),求 \(S_{10}\)(保留4位小数)。
首项 \(a = 3\),公比 \(r = \frac{1.2}{3} = 0.4\)
因为 \(|r| < 1\),使用公式:\(S_n = \frac{a(1 - r^n)}{1 - r}\)
\(S_{10} = \frac{3(1 - 0.4^{10})}{1 - 0.4} = \frac{3(1 - 0.0001048576)}{0.6}\)
\(S_{10} = \frac{3 \times 0.9998951424}{0.6} = \frac{2.9996854272}{0.6} = 4.9995\)
等比数列的首项是5,公比是\(\frac{2}{3}\),求 \(S_8\) 的值。
首项 \(a = 5\),公比 \(r = \frac{2}{3}\),项数 \(n = 8\)
因为 \(|r| < 1\),使用公式:\(S_n = \frac{a(1 - r^n)}{1 - r}\)
\(S_8 = \frac{5(1 - (\frac{2}{3})^8)}{1 - \frac{2}{3}} = \frac{5(1 - \frac{256}{6561})}{\frac{1}{3}}\)
\(S_8 = \frac{5 \times \frac{6305}{6561}}{\frac{1}{3}} = 15 \times \frac{6305}{6561} = \frac{94675}{6561} = 14.431\)
等比数列前3项的和是30.5,首项是8,求可能的公比值。
首项 \(a = 8\),前3项和 \(S_3 = 30.5\)
\(S_3 = \frac{8(1 - r^3)}{1 - r} = 30.5\)
\(\frac{8(1 - r^3)}{1 - r} = 30.5\)
\(8(1 - r^3) = 30.5(1 - r)\)
\(8 - 8r^3 = 30.5 - 30.5r\)
\(8r^3 - 30.5r + 22.5 = 0\)
解得 \(r = 0.5\) 或 \(r = 1.5\)
求使等比数列 \(3 + 6 + 12 + 24 + ...\) 的和超过150万的最少项数。
首项 \(a = 3\),公比 \(r = 2\)
使用公式:\(S_n = \frac{a(r^n - 1)}{r - 1} = \frac{3(2^n - 1)}{2 - 1} = 3(2^n - 1)\)
要使 \(S_n > 1500000\),即 \(3(2^n - 1) > 1500000\)
\(2^n - 1 > 500000\)
\(2^n > 500001\)
两边取对数:\(n\log 2 > \log(500001)\)
\(n > \frac{\log(500001)}{\log 2} \approx 18.93\)
因为n必须是正整数,所以需要19项。
等比数列的首项是25,公比是\(\frac{3}{5}\),前k项的和大于61,求k的最小值。
首项 \(a = 25\),公比 \(r = \frac{3}{5}\)
使用公式:\(S_k = \frac{25(1 - (\frac{3}{5})^k)}{1 - \frac{3}{5}} = \frac{25(1 - (\frac{3}{5})^k)}{\frac{2}{5}} = \frac{125}{2}(1 - (\frac{3}{5})^k)\)
要使 \(S_k > 61\),即 \(\frac{125}{2}(1 - (\frac{3}{5})^k) > 61\)
\(1 - (\frac{3}{5})^k > \frac{122}{125}\)
\((\frac{3}{5})^k < \frac{3}{125}\)
\((\frac{3}{5})^k < 0.024\)
两边取对数:\(k\log(\frac{3}{5}) < \log(0.024)\)
\(k > \frac{\log(0.024)}{\log(0.6)} \approx 7.8\)
因为k必须是正整数,所以k的最小值是8。
等比数列的首项是a,公比是r,前两项的和是4.48,前四项的和是5.1968,求r的可能值。
前两项和:\(S_2 = a + ar = a(1 + r) = 4.48\) (1)
前四项和:\(S_4 = \frac{a(1 - r^4)}{1 - r} = 5.1968\) (2)
由(1)得:\(a = \frac{4.48}{1 + r}\)
代入(2):\(\frac{\frac{4.48}{1 + r}(1 - r^4)}{1 - r} = 5.1968\)
\(\frac{4.48(1 - r^4)}{(1 + r)(1 - r)} = 5.1968\)
\(\frac{4.48(1 - r^4)}{1 - r^2} = 5.1968\)
\(\frac{4.48(1 - r^2)(1 + r^2)}{1 - r^2} = 5.1968\)
\(4.48(1 + r^2) = 5.1968\)
\(1 + r^2 = \frac{5.1968}{4.48} = 1.16\)
\(r^2 = 0.16\)
\(r = \pm 0.4\)
等比数列的首项是a,公比是\(\sqrt{3}\),证明 \(S_{10} = 121a(\sqrt{3} + 1)\)。
首项 \(a = a\),公比 \(r = \sqrt{3}\)
使用公式:\(S_{10} = \frac{a(1 - (\sqrt{3})^{10})}{1 - \sqrt{3}}\)
\((\sqrt{3})^{10} = ((\sqrt{3})^2)^5 = 3^5 = 243\)
\(S_{10} = \frac{a(1 - 243)}{1 - \sqrt{3}} = \frac{a(-242)}{1 - \sqrt{3}}\)
有理化分母:\(\frac{-242a}{1 - \sqrt{3}} \times \frac{1 + \sqrt{3}}{1 + \sqrt{3}} = \frac{-242a(1 + \sqrt{3})}{1 - 3}\)
\(S_{10} = \frac{-242a(1 + \sqrt{3})}{-2} = 121a(1 + \sqrt{3}) = 121a(\sqrt{3} + 1)\)
因此,\(S_{10} = 121a(\sqrt{3} + 1)\) 得证。
在解决等比数列求和问题时,要特别注意:
1. 正确理解题目中的"前n项"、"第n项"等概念
2. 当 \(|r| < 1\) 时,使用 \(S_n = \frac{a(1 - r^n)}{1 - r}\)
3. 当 \(|r| > 1\) 时,使用 \(S_n = \frac{a(r^n - 1)}{r - 1}\)
4. 当 \(r = 1\) 时,数列为常数列,\(S_n = na\)
5. 综合题往往需要建立方程组求解