8.5 Areas Between Two Curves

教材内容

基本概念

学习目标:掌握两条曲线之间面积的计算方法,使用积分公式求解。
面积 = \(\int_a^b [f(x) - g(x)] dx\)
= \(\int_a^b f(x) dx - \int_a^b g(x) dx\)
重要:只有当两条曲线在积分区间内不相交时,才能使用这个公式。
两条曲线间面积示意图
图1:两条曲线间面积的基本概念示意图

Example - 基础两条曲线间面积

题目:

The diagram shows a sketch of part of the curve with equation \(y = 5 + 4x - x^2\) and part of the curve with equation \(y = \frac{x^2}{2} + 1\).

Find the area of the region R bounded by the two curves.

Example 1
图2:Example 1 - 两条曲线围成的区域R

解:

  1. 确定积分限:从图中可以看出积分限为1到3
  2. 应用公式:Area of R = \(\int_1^3 (5 + 4x - x^2) dx - \int_1^3 (\frac{x^2}{2} + 1) dx\)
  3. 计算第一个积分:\(\int_1^3 (5 + 4x - x^2) dx = \left[5x + 2x^2 - \frac{x^3}{3}\right]_1^3\)
  4. 计算第二个积分:\(\int_1^3 (\frac{x^2}{2} + 1) dx = \left[\frac{x^3}{6} + x\right]_1^3\)
  5. 代入计算:Area of R = 11 (units²)

Example - 需要求交点的两条曲线

题目:

The diagram below shows a sketch of part of the curve S with equation \(y = 8 - 2x - x^2\)

The curve T with equation \(y = x^2 + x + 6\) intersects S at two points.

a) Find the x-coordinates of the points of intersection of S and T.

b) Use calculus to find the area of the finite region bounded by S and T.

Example 2
图3:Example 2 - 曲线S和T的交点示意图

解:

  1. 求交点:\(8 - 2x - x^2 = x^2 + x + 6\)
  2. \(2x^2 + 3x - 2 = 0\)
  3. \((2x - 1)(x + 2) = 0\)
  4. \(x = -2\) 或 \(x = \frac{1}{2}\)

b) Area = \(\int_{-2}^{0.5} (8 - 2x - x^2) - (x^2 + x + 6) dx\)

Area = \(\int_{-2}^{0.5} (2 - 3x - 2x^2) dx\)

Area = \(\left[2x - \frac{3x^2}{2} - \frac{2x^3}{3}\right]_{-2}^{0.5}\)

Area = \(\frac{125}{24}\)

解题策略

重要提示:You will need to find the limits yourself if you are required to find the area bounded by two curves.
  1. 画图:画出两条曲线,标出交点
  2. 找交点:联立方程求解交点坐标
  3. 确定积分限:根据交点确定积分的上下限
  4. 确定上下函数:确定哪个函数在上方,哪个在下方
  5. 计算积分:使用公式计算面积
  6. 检查答案:确保面积为正数

重要公式

面积 = \(\int_a^b [f(x) - g(x)] dx\)
面积 = \(\int_a^b f(x) dx - \int_a^b g(x) dx\)
面积 = \(\int_a^b (f(x) - g(x)) dx\)

注意事项

常见错误:
学习建议:重点掌握交点求法,多做两条曲线间面积计算,养成先画图的习惯。