精选复习题目
1. 基础定积分计算
a) Find \(\int (x^{\frac{1}{2}} - 4)(x^{-\frac{1}{2}} - 1) dx\).
b) Use your answer to part a to evaluate \(\int_1^4 (x^{\frac{1}{2}} - 4)(x^{-\frac{1}{2}} - 1) dx\) giving your answer as an exact fraction.
显示提示
显示答案
提示: 先展开括号,然后逐项积分。
答案:
a) \((x^{\frac{1}{2}} - 4)(x^{-\frac{1}{2}} - 1) = 1 - x^{\frac{1}{2}} - 4x^{-\frac{1}{2}} + 4\)
= \(5 - x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}\)
\(\int (5 - x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}) dx = 5x - \frac{2}{3}x^{\frac{3}{2}} - 8x^{\frac{1}{2}} + C\)
b) \(\int_1^4 (5 - x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}) dx\)
= \(\left[5x - \frac{2}{3}x^{\frac{3}{2}} - 8x^{\frac{1}{2}}\right]_1^4\)
= \(20 - \frac{16}{3} - 16 - (5 - \frac{2}{3} - 8)\)
= \(-\frac{16}{3} + \frac{2}{3} = -\frac{14}{3}\)
2. 分数幂函数积分
Consider the function \(y = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}, x > 0\).
a) Find \(\frac{dy}{dx}\).
b) Find \(\int y dx\).
c) Hence show that \(\int_1^3 y dx = A + B\sqrt{3}\), where A and B are integers to be found.
显示提示
显示答案
提示: 使用分数幂的微分和积分规则。
答案:
a) \(\frac{dy}{dx} = 3 \times \frac{1}{2}x^{-\frac{1}{2}} - 4 \times (-\frac{1}{2})x^{-\frac{3}{2}}\)
= \(\frac{3}{2}x^{-\frac{1}{2}} + 2x^{-\frac{3}{2}}\)
b) \(\int y dx = \int (3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}) dx\)
= \(3 \times \frac{2}{3}x^{\frac{3}{2}} - 4 \times 2x^{\frac{1}{2}} + C\)
= \(2x^{\frac{3}{2}} - 8x^{\frac{1}{2}} + C\)
c) \(\int_1^3 y dx = \left[2x^{\frac{3}{2}} - 8x^{\frac{1}{2}}\right]_1^3\)
= \(2 \times 3\sqrt{3} - 8\sqrt{3} - (2 - 8)\)
= \(6\sqrt{3} - 8\sqrt{3} + 6 = -2\sqrt{3} + 6\)
所以 A = 6,B = -2
3. 复合函数面积计算
The diagram shows part of the curve with equation \(y = p + 10x - x^2\), where p is a constant, and part of the line l with equation \(y = qx + 25\), where q is a constant. The line l cuts the curve at the points A and B. The x-coordinates of A and B are 4 and 8 respectively.
a) Show that p = -7 and calculate the value of q.
b) Calculate the coordinates of C.
c) The shaded region in the diagram is bounded by the curve and the line segment AC. Using integration and showing all your working, calculate the area of the shaded region.
图1:复合函数面积计算示意图
显示提示
显示答案
提示: 先求交点,然后计算两条曲线间的面积。
答案:
a) 在x = 4处:\(p + 40 - 16 = 4q + 25\),即 \(p + 24 = 4q + 25\)
在x = 8处:\(p + 80 - 64 = 8q + 25\),即 \(p + 16 = 8q + 25\)
解得:p = -7,q = -2
b) C的坐标:(8, 9)
c) Area = \(\int_4^8 (-7 + 10x - x^2) - (-2x + 25) dx\)
= \(\int_4^8 (-32 + 12x - x^2) dx\)
= \(\left[-32x + 6x^2 - \frac{x^3}{3}\right]_4^8\)
= \(-256 + 384 - \frac{512}{3} - (-128 + 96 - \frac{64}{3})\)
= \(\frac{64}{3}\)
4. 梯形法则应用
a) Complete the table below, giving the values of y to 3 decimal places.
\(y = \sqrt{3^x + x}\)
b) Use the trapezium rule with all of the values of y from your table to find an approximation for the value of \(\int_0^1 \sqrt{3^x + x} dx\).
显示提示
显示答案
提示: 先完成表格,然后使用梯形法则公式。
答案:
a) 完成表格:
x = 0.5时,y = √(1.732 + 0.5) = √2.232 ≈ 1.494
x = 0.75时,y = √(2.280 + 0.75) = √3.030 ≈ 1.741
b) h = 0.25
Area ≈ ½ × 0.25 × (1 + 2(1.251 + 1.494 + 1.741) + 2)
≈ 0.125 × (1 + 8.972 + 2) = 1.496
5. 两条曲线间面积
The curve A with equation \(y = 8 + 4x - x^2\) and the curve B with equation \(y = x^2 - 4x + 8\) intersect at two points M and N.
a) Find the coordinates of M and the coordinates of N.
b) Use calculus to find the area of the finite region enclosed by A and B.
显示提示
显示答案
提示: 先求交点,然后使用两条曲线间面积公式。
答案:
a) \(8 + 4x - x^2 = x^2 - 4x + 8\)
\(4x - x^2 = x^2 - 4x\)
\(8x - 2x^2 = 0\)
\(2x(4 - x) = 0\)
\(x = 0\) 或 \(x = 4\)
M(0, 8),N(4, 8)
b) Area = \(\int_0^4 (8 + 4x - x^2) - (x^2 - 4x + 8) dx\)
= \(\int_0^4 (8x - 2x^2) dx\)
= \(\left[4x^2 - \frac{2x^3}{3}\right]_0^4\)
= 64 - \(\frac{128}{3} = \frac{64}{3}\)